28

AJAX: A New Approach

if you need information on: See page:

Evolution of Web Application 1108

Chapter 28

AJAX, Asynchronous JavaScript and XML, is a new technique. Its primary components are JavaScript
and XML. AJAX is a technique, which describes how other technologies, JavaScript, DOM (Document Object
Model), and XML can be used together to create interactive Web applications.

In early days, when we used to create a Web application with these technologies, the applications based on these
technologies were known separately. Even the end-user couldn’t work on the Web application as desktop-based
application. To overcome this, Jesse James Garrett of Adaptive Path combined JavaScript, XML, and DOM
together to form a new technique, called AJAX. In this technique, the request to the Web server is send by using
the XMLEttpRequest object. This object, a part of JavaScript technology, helps in sending asynchronous
request to the server. With this request, Web applications can now interact with Web server asynchroncusly.
The time taken to refresh the page also gets minimized which makes the Web application behave like a desktop
application. That is why, in AJAX-based Web applications, web pages need not be refreshed repeatedly, when
only a part of the page is changing.

In this chapter, we will start with the evolution of Web applications and the technologies used for developing
them in bygone days. The focus will next shift to a discussion on the problems associated with these technologies
that were used to create Web applications in early days, and how these problems led to the development of
AJAX techniques. Last, but not the least, a sample AJAX-based application will make us aware of AJAX benefits.

Evolution of Web Application

In earlier times, applications had their own client-based program that required to be configured on the client
machine. Both the server and client needed an upgrade when there were any changes made in the application.
However, with the advent of a web-based application, client-server applications changed a lot. A Web
application provides a series of web pages to the client, which is accessed by all types of clients using any
browser of their choice. There is no need to install a separate client program on all client machines, as the Web
browser interprets and displays all web pages and works as a common client for a Web application. Therefore,
we can now develop web-based client-server application without spending time on creating separate client
programs for different client machines.

In earlier times, we could access simple, static HTML pages using a Web browser, which sends a request to a
Web server. The Web server then sends the requested web page, which is stored at the server using HTTP. These
web pages are static content, i.e. a constant state: a text file that does not change. When a requirement arose for
designing a Web application that processes the data given by the client and presents dynamic content to the
client, a problem surfaced. To overcome this problem, an evolution of Web application took place, which led to
the development of technologies for processing the client request and generating response content dynamically.
With the emergence of this new concept, new technologies also took birth, Thus, the evolution of a Web
application gave birth to new technologies, which helped in creating Web applications. The following are a few
of the technologies, which can be used to create a Web application:

Common Gateway Interface (CGI)

Applets

JavaScript

Servlets

JSP

ASP

PHP

DHTML

XML

Commorn Gateway Interface (CGI)

Common Gateway Interface, CGI, is a standard protocol for interfacing the external application software with an
information server, commonly known as Web server, as shown in Figure 28.1;

{ I Ry iy A e o (R R

o

1108

AJAX: A New Approach

Intemet
Web Page mm———— & Web Server

Programs (Part atc}

Figure 28.1: Displaying how CGl Works

CGl is not a programming language; rather it is a protocol, which defines a set of rules on how the Web server
communicates with the program. This functionality allows the server to pass the request from the client Web
browser to the external application. In fact, CCI is a specification used to transfer information between the Web
server and the CGI program. A CGI program is written in any programming language, like C, Perl, and Java, etc.
CGlI programs heip the Web server to interact dynamically with web users, e.g. a CGI program is used to process
the form’s data when it is submitted once. CGI also allows HTML pages to interact with applications rather than a
static web page. Some of the advantages of CGI are as follows:

O Itissimple and quick to develop.

Q@ CGlis rich in libraries. Therefore, there is no need to work a lot on your own.

Here are some limitations of CGI:

O CGl is slow; being slow is the flaw of CGI itself and not of the particular programming language used for
scripting.

4 Each time the process must be launched from the beginning and that takes a lot of time.

Q The resources, like the database connections, must be created and reloaded every time,

0 The state is not persistent. On every request, everything is built again.

Now let’s us move on to another technology called Applets, related to Web applications.

Applets

An applet is a program written in Java programming language, which can be included in the HIML page and
run within a Web browser. Java applets are normally used to include small, interactive components to the web
page. The applets are mainly used to provide dynamic user-interface and a number of graphical effects for the
web pages. When the Web client or the Web browser opens the web page, the applet automatically gets
downloaded just like an image, However, with the applet, one cannot control how much of the screen the applet
takes up.

Javascript
Netscape originally invented a simple scripting language called LiveScript. LiveScript was a proprietary add-on
to the HTML. When Sun’s new programrming language, Java, became popular, Netscape quickly switched over
and came up with a new scripting language called JavaScript. Only the beginning four alphabets are similar—
Java and javaScript — otherwise both are entirely different from each other.

Normally a Web designer designs web pages and a Web developer codes the application. JavaScript is the
scripting language, which is used in many websites by the Web designer to create a client-side application with
very less effort. The scripting language is interpreted at runtime and not compiled like other languages, such as
C++, C#, etc. Thus, JavaScript is an interpreted language, which means that the scripts execute without
compilation. JavaScript is also the client-side language, as it runs on the client browser. JavaScript can be used in
almost all the Web browsers, like Internet Explorer, Mozilla, Firefox, Netscape, etc. and it can easily interact with
the HTML elements.

1109

Chapter 28

Uses of JavaScript

Basically, JavaScript is designed to create interactivity with HTMIL pages. The following are the uses of

JavaScript:

O JavaScript is simpler, so anyone can put the small snippets of the code into their HTML pages.

QO JavaScript enables writing of dynamic text into HTML page. The variable text can also be written in HTML
page, e.g. document..write (“<n1>" +name + “</h1>"). This command will write the text of the name
variable into the HTML page.

O JavaScript enables you to read and change the content of HTML controls. For example, the text inserted in
the text field of an HTML page can be read with the help of JavaScript.

O Certain validations to be performed on the client-side, such as not leaving any text field blank, match of the
password and the confirmation of password fields, etc. can be checked at client-side by using JavaScript as
the scripting language.

O JavaScript is also helpful in creating cookies. It can be used to either store or retrieve relevant information
on the client’s computer.

Q JavaScript also enables you to load a specific page depending upon the client’s request.

O JavaScript is used to write functions that are embedded in or included from HTML pages and interact with
the Document Object Model (DOM) of the page.

O JavaScript is also helpful in changing the image as the mouse cursor moves over them.

O JavaScript is also helpful in calling the new web page, according to the client or user’s action

Till now, you were aware of the basic technologies related to Web application programming. Now let's
understand the technologies required at the time of Web application development.

Serviets

Java Servlets are an alternative to CGI programs. The major difference between CGI and Servlets is that the
Servlets are persistent. In other words, once loaded it stays to fulfill other subsequent requests. On the contrary,
CGI disappears after fulfilling the request once. Moreover, similar to the applets that run on the browser, the
Servlets run on Java-enabled Web server,

The Java Servlet APT allows the developer to add dynamic content to a Web server using Java platform. The
Servlets maintain the state across multiple requests by using HTTP cookies, session variables, URL rewriting or
the Hidden fields. The Servlet AP’f contains javax.servlet package hierarchy. The Servlet AP also specifies
the expected interaction of the Web container and a Servlet. The Web container is part of the Web server and it
performs many tasks. Some of these tasks are interaction with the Servlets, managing the life cycle of the
Servlets, and mapping the URL to a particular Servlet, if the URL requester has the correct access rights.

The main purpose of the Servlets is to serve HTML to the client, mainly through HTTP protocol. Servlets are
created, managed, and destroyed by the Web server, where they run. The Servlets are recognized in the context
of the Web server.

JavaServer Pages (JSP)

JavaServer Pages (JSP) is an enhancement to the Java Servlet technology from Sun Microsystems. The [SP
technology provides a technique to dynamically generate web pages. JSP also simplifies the process of creating
or developing web-based applications.

~ The JSP technology allows HTML to be combined with Java on the same page. In response to the Web client’s

" request, JSP allows software developers to dynamically generate HTML documents. The JSP technology allows
Java code and certain pre-defined actions to be embedded into static content. The Java code is added with the
use of the JSP directives, JSP scripting elements, and JSP actions. The JSP syntax adds additional XML-like tags,
called JSP actions. The JSP compiler compiles JSP into Servlets. The JSP compiler can directly generate byte code
for the Servlets or can generate a Servlet in Java code, which is then compiled by the Java compiler. The
extension of the JSP files is (. jsp).

Figure 28.2 shows the different clients connecting to the Web server through internet:

1110

AJAX: A New Approach

CLIENT Wab Ssrver
PDA
Internet
Inlernet
Laptop T —— ; Apache Tomcat Database
e — Web Server E— (Qracie)
Internet — JSgngme
Personat i i
Cornputer
JSP Files slored here

Figure 28.2: Different Clients Connected to the Web Server

In Figure 28.2, the most popularly used Web server, Apache Tomcat Web server, is running on Windows. As
shown in the Figure 28.2, the JSP files run on the Web server in the JSP Servlet engine. The JSP Servlet engine
dynamically generates the HTML output and sends it to the client’s browser,

Active Server Pages (ASP)

Active Server Pages (ASP) is the Microsoft’s server-side scripting engine for dynamically generating HTML or
the web pages for the Web browser. The default scripting language used to write ASP is VBScript. The simple
approach to understand ASP is that ASP is a program that runs inside IIS. [IS stands for Internet Information
Server. In competition to JSP, a server-side technology given by Sun Microsystems, ASP is the server-side
technology provided by Microsoft.

The ASP page though similar to the HTML page, also contains text, XML, and scripts. The scripts in an ASP file
are executed on the server. The extension of the ASP files is (. asp). When the Web browser sends the request for
an ASP file, the IIS passes the request to the ASP engine and then, after reading it line by line, the ASP engine
executes the scripts in the file. Later, in the plain HTML format, the ASP file is returned to the Web browser.

The modification and additions to the contents of the web page can be done dynamically with the help of ASP.
The data from the database can also be accessed with the help of ASP. In addition, the resuit is returned to the
Web browser. ASP, in comparison to CGI and Perl, is simpler and faster in speed.

PHP

Till now, you were aware of Sun Microsystems and Microsoft technologies, which are JSP and ASP, respectively.
Let’s move on to understand another server-side scripting technology called PHP, which is an alternative to ASP
and JSP. PHP helps to create dynamic web pages. You can embed PHP into HTML pages and generate a
dynamic web page. PHP programs can be deployed on a Web server. PHP uses the concept of CGI for server-
side programming, It acts as a filter for displaying the dynamic content and can be used for extracting data from
a database.

Dynamic HTML (DHTML)

Before studying DHTML in detail, let’s first expand the term DHTML. DHTML stands for Dynamic Hypertext
Markup Language and is the art of making the HTML pages dynamic. DHTML is a combination of technologies
used to create dynamic and interactive websites and Web appilications. Initially in standard HTML, once the
page is loaded from the server it will not change until another request to the server. On the contrary, dynamic
HTML provides much control over HTML. elements. It allows the HTML elements to change at any time without
returning to the Web server and uses the DOM, (5SS, HTML, and JavaScript to develop interactive Web
applications.

Document Object Model (DOM)
DOM allows changing any part of the web page using DHTML. DOM is the API that serves as glue for binding a
scripting language, like JavaScript, with the markup language, like HTML. HTML DOM defines the standard set

111

Chapter 28

of objects for HTML and allows access and manipulation of HTML objects in a standard way. It helps in
specifying each part of the web page and allows access by using naming conventions. A detailed study about
DOM is covered in the next chapter, which discusses the different levels of DOM that serve as the DOM
specification and more.

Cascading Style Sheets (CSS)

The CSS is used in DHTML to control the look and feel of a web page. CSS is used to style the HTML elements.
The font color, font text, background color, images, and the placements of objects on the web page are defined in
the Cascading Style Sheets. CSS allows the developer to control the style and layout of various web pages. This
can be done by defining the style for each HTML element and then can be applied to multiple web pages at a
time. This also enables a quick global change. In other words, if the same style is applied to all the HTML
elements then, on simply making changes in the style, all the elements will get updated automatically. Therefore,
DHTML helps in making the web pages dynamic and provides a good look and feel of the web page with the
help of CSS. The HTML elements or objects are placed in the web page by using XHTML. With the help of DOM
specified in the web page, these objects, placed in the web page, can be accessed or manipulated at any time,
Now let’s understand XML.

XML

XML is the extensible markup language used for the exchange of information between the applications or the
organizations. XML allows the designers to create their own user-defined tags and enable the transmission,
validation, and interpretation of data between applications or the data between the organizations. In simpler
words, it allows the designer to provide data in tags by creating meaningful tags. Some of the XML-related
technologies are as follows:

0 XHTML

o XMLDOM

0O XSLT

0 XML Parser

Let’s have an overlook to the listed XML-technologies.
XHTML

As discussed in DHTML, XHTML is a cleaner but stricter version of HTML. XHTML refers to the eXtensible
Hypertext Markup Language whose focus of existence is to replace HTML. XHTML is similar to HTML 4.x and
is defined in the form of a XML application. It consists of elements in HTML 4.01, combined with the syntax of
XML. As previously stated, XML is the markup language which results in well-formatted documents. So,
XHTML provides the privilege of writing well-formed documents, which work in all the Web browsers. Certain
rules to be followed while using XHTML are as follows:

Q XHTML elements should be properly nested

QO XHTML elements should always be closed

0O XHTML elements should be in lowercase

O XHTML documents must have a single root element

XML DOM

DOM refers to the Document Object Model and presents the XML document as the tree-structure having the Root
node as the parent element and the Elements, Attributes, and Text defined as the child nodes. Se, XML DOM
defines the standard way for accessing and manipulating XML documents. The elements containing the text and
the attributes, with the help of the DOM tree, can be manipulated and accessed. The contents of these elements
can be modifted, new elements can be created, or the unwanted elements can be removed from the DOM tree.
The most important thing to be noted is that all the Elements, their Text, and their Attributes are known as the
nodes. :

In the DOM structure, the entire document is considered as the Document node; XML tag or the XML element is
recognized as the Element node; the text in the XML elements are referred to as the Text node; attributes are

1112

AJAX: A New Approach

considered the Attribute nodes; and the comments are considered the Comment node. In the DOM tree-
structure, the nodes have a hierarchical relationship with each other. The terms parent and child are used to
describe the relationships between the nodes. Let’s consider an example of a XML file and look at its DOM tree-
structure.

The code given in Listing 28.1shows code for product . xml file containing the data related to various products:

Listing 28.1: products.xml
<7 xml version="1.0" encodmg="UTF -8 7
<PRODUCTDATA> '
<PRODUCT. PRODID="POOLY>. - . - : ! :
<PRODUCTNAME>Barh1e DaTI-:/PEOOUCTWE} : : :
<DESCRIPTION>This s a toy for: ch1ldren,1n the age group beiow 5. years
. <PRICE>$24 ooac/m:c& _ e : e
QUANTITY 12<{QUANTITY>
</PRODUCT> '
- «PRODUCT: PRODIDR"PO02"5 o s
& <Pﬂ6ﬂU€TNAﬂE:aH1ﬂ’i Bu$<f PRODUCTNAME>

,sngS§RIPTIou>

<PRICE>$42 00«/ PRICE>
<QUANTITY>G</ QLIAﬁTTTY} .
</PRODUCT>]

3 : <pnommzscar</mmmt>_
'<BE5CR1FTION>This s dtey for ch11dre

inthe dge group-of 10-15 years </DESCRIPTION>

" </PRODUCTDATA> SR . ; ik . :
In Listing 28.1, <PRODUCTDATA> is the root element of the document Smce a]l the other elements are within the
<PRODUCTDATA> element, it is considered as the root element. The root element has three <PRODUCT> nodes
and an Attribute node named, PRODID. Each of the Element nodes has a Text node as well.

Figure 28.3 shows the DOM tree-structure for products . xml:

RCOT elerment:
<PRODUCTDATA>
r
Parent | Chiid
Elament: Aftribute:
<PRODUCT> *PRODIC"

I

I

Element: Element: Eiement: Element:
<PRODUCTNAME> <DESCRIPTION> <PRICE> <QUANTITY>
[S
Siblings
Text: Taxt Text: Text:
Barbig Dot This is the toy for the 24 12
chifdren in the age group
Below & years

Figure 28.3: Showing DOM node Tree-Structure
Figure 28.3 shows only one child node <PRODUCT> of the parent node <PRODUCTDATA>. The DOM node
tree-structure shown earlier has the Root node <PRODUCTDATA> containing the three child nodes, named
<PRODUCT>, Each <FRODUCT> child node has four Element nodes and an Attribute node. Each Element node
has the respective Text node, as shown in the Figure 28.3. We will go into detail about the various levels of the
poM and how you can navigate through the nodes in the next chapter.

1113

Chapter 28

XSLT

XSLT is the language used for transforming XML documents into XHTML or other XML documents. XSLT uses
XPath for navigating through XML documents and finding information in it. In the transformation process,
XSLT uses the XPath searches for those parts of the source document, which match the pre-defined template.
When a match is found, XSLT transforms the source document into the resultant document by applying the pre-
defined template.

XML Parser

The XML parser is used to read, update, create, and manipulate XML documents. For manipulating the XML
document, the XML parser loads the document into the computer’s memory and then manipulates data by using
the DOM node-tree-structure. The XML parser is the part of the software, which reads the XML files and tests
whether the XML document is well-formed against the given DTD or the XML schema. Moreover, the XML
parser also makes the XML files available to the application with the use of the DOM. '

Till now the chapter dealt with the explanation of almost all the technologies used to create Web applications.
All these technologies discussed earlier share a common problem and AJAX proves to be the solution for these
problems. Read on to know about them,

Problems with Technologies

All the previously mentioned technologies use the Classical or traditional Web application model. In the
Classical or the traditional Web application model, the nature of interaction between the client and the server is
of start-stop-start-stop. In a traditional Web application model, the browser responds to the user action by
discarding the current HTML page. Then the request is sent back to the Web server and when the server
completes the processing of request, it returns the response page to the Web browser. Finally, the browser
refreshes the screen and displays the new HTML page. You will be surprised to note that the user is bound to
not do anything, until the entire process completes.

In technical terms, the problem with the classical Web applications model was the synchronous request-
response communication model. This can be explained with the help of Figure 28.4:

Browser Client
| vestiniortadg
| i

"
HTTP Reques:

HTML + JavaScript

. Bervar-Side Logic. -

Server-Side Systems

Figure 28.4: Classical Web Application Model
This Classical Web Application model, shown in Figure 28.4, makes technical sense; however it does not provide
the best user experience. Since this classical application model keeps the user waiting, it does not provide the
best user experience. To overcome this, the developer noticed a technical approach that Google used. After
analyzing the facts of Google, on February 18, 2005 Jesse James Garrett, President, and founder of the Adaptive
Path came out with a new technique AJAX — that was based on the approach used by Google.

Let us move on further to learn about AJAX.

1114

AJAX: A New Approach

AJAX—The Solution

AJAX, a new approach to Web applications, is based on several technologies that help to develop applications
with better user experience. It uses JavaScript and XML as the main technology for developing interactive Web
applications. These applications are based on AJAX Web application model, which uses JavaScript and
XMLHttpRequest object for asynchronous data exchange. The JavaScript uses XMLHttpRequest object to
exchange data asynchronously over the client and server. Let’s move further to have a detail study on the AJAX
Web application Model.

AJAX Web Application Model

You already know that the major issue, with regard to the Classical Web application model, was resolved
through AJAX. The AJAX application eradicates the start-stop-start-stop nature or the click, waif, and refresh
criteria of the client-server interaction. Figure28.5 shows how the intermediary layer is introduced between the
user and the Web server:

Browser Client

User Interface

!
JavaScript call
HTML + JavaScript

Ajax Engine "

i |

H
HTTP request

XML data
|
v !

Siriorida ogicand dots

Server-side Systems

Figure 28.5: AJAX Web Application Model

Instead of loading the web page during the beginning of the session, the browser loads the ASP engine, written
in JavaScript. As shown in Figure 285, the web page sends its requests using a JavaScript function. This
JavaScript code makes a request to the server. The server response comprises of data and not the presentation,
which implies that the data required by the page is provided by the server as the response, and the style or
presentation is implemented on that data with the help of the markup language. Most of the page does not
change. Only parts of the page that need to change are updated. The JavaScript dynamically updates the web
page, without redrawing everything. For the Web server, nothing has changed; it still responds to each request,
just as it did before.

Though JavaScript makes a request to the server, you can still type in Web forms and even click buttons, while
the Web server is still working in the background. Then, when the server completes its processing, your code
updates just the part of the page that has changed. This way you never have to wait around. That is the power of
asynchronous requests. AJAX engine, between the user and the application, irrespective of the server, does
asynchronous communication. This prevents the user from waiting for the server to complete its processing. The
AJAX engine takes care of displaying the user interface and the interaction with the server on the user’s behalf.

But in traditional Web applications, the synchronous mode of communication existed between the client and the
server, as shown in the Figure 28.6:

1115

Chapter 28

User waits tll User Interactivity User waits tilt

" dser
" d
C"emln Braciiviey the server the server
completes the complates she
Processing processing
Data Data Data Data

Fransmission Transmission

Transmission Transmission

System Processing

Figure 28.6: Synchronous Mode of Communication
pdate and the asynchronous communication, the programming
pecific data exchange format or the specific programming

Since the essence of AJAX is a partial screen u
model, shown in the Figure 28.7, is not bound to a s
language or the specific communication mechanism:

Client
< Browser User Interface

‘- User Interactivity :
LT Input display T/ Ingal \ disblayy Bl “display/ - Tpot \display/ ,

¢ Ajax Engine
%, Client-side processing

Data Data Data
Transmission Transmission\ Transmission

Server Server-side processing Server-side processing

Figure 28.7: Displaying Asynchronous Mode of Communication
As shown in Figure 28.7, every user action generates an HTTP request that takes the form of a JavaScript to call
the AJAX engine. Any response to the user action does not require the trip back to the server as in the Classical
Web application model. Rather, the AJAX engine handles on its own, i.e. the data validations, some navigation,
editing data in memory, are handled by the AJAX engine,
if the AJAX engine needs something from the server, like retrieving new data or loading additional interface
code, then the engine makes the asynchronous interaction with the server, using JavaScript and
XMLHttpRequest object for asynchronous data exchange. The engine’s interaction with the server does not
interrupt the user’s interaction with the application. In this way, the asynchronous communication is done with

the help of the AJAX engine.

(Note Yl

For more information on the XMLHttpRequest Object, refer Chapter 30.

Comparing Figures 28.6 and 28.7, it is seen that in the asynchronous mode of interaction, there is no scope for the
user to wait until the server-side processing gets over. The AJAX Web application mode! allows users to
continue working, and simultaneously, if necessary, the AJAX engine interacts with the server without
interrupting the user’s interaction with the application.

After learning how AJAX works and how the problems or shortcomings of traditional technologies are avercome
by using AJAX, let’s create the first AJAX application by using JavaScript.

1116

AJAX: A New Approach

Creating a Sample AJAX Application

Let’s consider a scenario of a Jewelry showroom. The owner wants to design a web page that would display the
different jewelry items along with some information to its various customers. When the user points to an image
whose information he wants to know, the details will be displayed on the web page without the page being
refreshed repeatedly.. In this application, we first need to create a Jewelery.html page, which shows information
about the different jewelry in the showroom.

The code, given in Listing 28.2, shows code for the Jewelry.htrnl file of the application (you can find Jewelry.html]
file in the Code\ AJAX\ Chapter 28\ Jewelry folder on the CD):

Listing 28.2: Jewelry.html
<html>
<title>First AJax applicationc/titles .
- <script tanguage = "javascriptis o oo
var XMLHttpRequestoby: = falsaj ooy

if (window.XMLHETPRequest) f T
XMLt tpRequestob] = new XMLHEtpRegiest(}: =~ -

} else if (window.Activexobject) { e T

XMLHttpREquestOb] = new .. = . 0 .

Activexobject("Microsoft. XmHTTP");.

function getbata(datasource, divip) - .

_:%f(xntﬁttbkédueétﬁ@f}
" var_obi,.= doc
1 XMLHTtpReq

resdgstath & 4

tate PR
Eus e 2000

} .

} _
</script> -
</head> .
<body> - 0 o o 0 T

<H1>First Application using AJAX</H1>- o NS R o

<img src="imagel.jpg" enmouseover = "getbata(’bangles.tit’, ‘targetoiv')™»

<img. srce"imageZ.jpg" onmoussover = "getpata(’rings.txt',’targethiv’)">

‘
<hlswelcome to

- Tewelery showroont</hls:

</div>

</body> - :

In Listing 28.2, an HTML page is designed displaying the images of the various jewelry items available in the

showrcom. As soon as the user points the mouse pointer on any of the three images, the text saved in the
respective text files are displayed on the Web browser. The three text files are as follows:

1117

Chapter 28

Q bangles.txt

O rings.txt

0 necklaces.txt

To run the Jewelery application, ensure that a Web server is configured on your machine. Here, we are using

Tomcat as a Web server for running AJAX-based Web application. Follow these steps to run the application:

O Open the Internet Explorer (IE).

0 Type the fellowing address (hitp:/ /localhost:8080/Jewelry/Jewelry.html) in the address bar of the IE and
press enter to open the page (Figure 28.8).

As we are using Tomcat web-server to deploy all the applications given in this book, the port used in our case is 8080. It
can vary in your case. The default port used by Tomcat web-server is 8080.

‘L AR, Anguinabn | ey, Wi ot epieces B
[T R o P e :

ok [v A appition

First Application using AJAX

W uffer too man bangle 13 6 (ol Foghes Diaasond baagirs

ore N)) o o ctactnd i Sin C ks o

Figure 28.8: Showing Output of the Jewslry Application

0 When you move the mouse pointer on any of the images, the text related to that image get displayed, as
shown in the Figure 28.9:

€ e videwely.
gk 1

C b b wew e Toon - g
W e A pphesce I B L L

it - A i Lt e 2

First Application using AJAX

Rmgr dmnancg rings h wondriu deigran? Hedrthaprd omgs Duamcnd ons gk rings Tk plared rings

Do M Locan rivanet | Froteched Mada: Pn Humn -

Figure 28.9: Displaying a Simple AJAX Example

1118

AJAX: A New Approach

As the mouse moves from one image to another, the JavaScript in the page fetches some new text and replaces
the older text, without even a screen flicker or page fetch or fuss.

Now let’s understand how the Jewelery.html page uses AJAX. When the mouse moves over any of the three
images, the onmouseover event is generated and the JavaScript method, getData, is called as shown in the
following code snippet:

<body>

<HI>First Appli catmn using AJAX</H1>

<img src="Imagel.3jpg" onmouseaver—"getbata('bamﬂes £%t", 'targetniv I

<img ‘src="1Irgge.jpg" onmouseover="getDatal rings.txt", “targetniv'}"s

<img src="Image3.jpg"” onmuseovers"getnata('nec_k'laces.txt';"targetniv')"s :

<div-id="targetpiv"s>. - : TLE S
<hl>welcome 1o my Jewelery showrooml<jh1>
</div> : . .
</body>
The getData method passes two text strings—firstly, the name of the text file, like bangles.txt or
rings.txt ornecklaces.txt, and secondly the name of the <div> element.

Listing 28.3 shows code for bangles.txt file (you can find bangles.txt file in the Code\ AJAX\ Chapter 28\ Jewelry
folder on the CD):

Listing 28.3: bangles.txt
we offer too many bangles to 1ist!
Gold Bangles .
Diamond bangles .
Listing 28.4 shows code for the rings.txt file (you can find rings.txt file in the Code\A]AX\Chapter 28\ Jewelry
folder on the CD):
Listing 28.4: rings. txt
Rings: Amazing ri ngs with wonderful des1gmng‘ }

. Heart-shaped: rmgs ;

" piamond rings.
gold rings =
Gold plated rings o :

Listing 28.5 shows code for the neﬁklaces txt (you can fmd necklaces.txt f:le in the Code\A]AX\Chapter
28\Jewelry folder on the CD}):

Listing 28.5: necklaces. txt
The all kind of diamond and gcﬂd neck1aces are also avaﬂab'le
piamond necklace -
Gold necklace <~ -7 7 ' S :
The necklaces are also desugned accorthng to your choice.

Apart from the preceding text files, three image files of the bangles, rings, and necklaces are also displayed on
the web page.

Any of these three texts is downloaded by the browser from the server, which is in the background, while the
user is working with the rest of the web page. Read on further to understand how this is done.

Creating the XMLHttpRequest Object
The application created here requires the XMLHt tpRequest object. In Listing 28.2, towards the beginning of?
Jewetery html code, locate the following code snippet:
<script Janguage = "javascript's>
var’ muttpkeqﬁe'stubj “u jf"aTs’te’ H i

.

1119

Chapter 28

This code snippet declares a variable XMLHttpRequestObj. Since this code is outside any function, it runs
immediately when the page loads. This variable is set to false, so that the script can check later whether the
variable is created or not. In case of browsers, like Netscape, FireFox, Opera, XMLHt t pRequest object is usually
the part of the browser’s window object and it can be accessed as window.XMLHttpRequest, If the
window.XMLHt tpRequest returns true then a XMLHttpRequest object is created with the following code:
if (window.xMLHttpRequest) {
XMLHttpRequestOb] = new XMLHttpRequest();

On the contrary, a different perspective is required for the Internet Explorer Web browser. The ActiveX object
in the Internet Explorer (version 5 and so on) is used to create the XMLHttpRe quest ob]ect as shown here:
if (window.Activexobject) { BEERE '

XMLHEttpReqUestOb] = new .. :

Acti vexohject ("M'i crosaft xm_m‘rp“) i
50, depending upon the browser you are usmg, an XMLHEt tpRequest object is created.
When the user moves the mouse over the images, an “onmouseover” event is generated which calls the getData
() function. When the getData (} function is called, the XMLHt tpRequest object is first checked to see whether
itis valid, and then further processing is done.

Opening XMLHttpRequest Object for Asynchronous Downloads

When the valid object of the XMLEt t pRequest is created, the object calls its open () method. You can configure
the object to use the URL you want by using the object’s cpen method. The syntax of open () method is as
follows:
req open(ﬂGetn'URL tl"ue), k L AU . Calere . AR .

Here, the first parameter indicates the type of HTTP rnethod that is used for sendmg request the second
parameter is the URL of the requested resource and; the third parameter is optional, which shows whether the
request is synchronous or Asynchronous. The default value of third parameter is true, which indicates an
Asynchronous request.

Here, in this application, the URL from which the data you want to fetch is passed from the getData function as
the dataSource argument. The URL can be opened with the standard HTTP techniques, like GET or FOST or
PUT. This example uses the GET method to request the respectlve text flle on the server:
XMLHttpRequest,.open("GET", datasource);

After opening the XMLHttpRequest object, the XMLEttpRequest object has the property named
onreadystatechange, which allows handling the asynchronous loading operations. If this property is
assigned to the name of any JavaScript function, then this function will be called each time the
XMLEttpRegquest object’s state changes.

This JavaScript function is also known as “Callback” function. When the server returns with the information, the
callback function is invoked. In turn, the callback function can display the new information te the user. We
defined the callback function with the following JavaSeript code:

XMLHttpRequestCh] .onreadystatechangs = function . ()
if (XMLHttpReEquestobj. readyState == 444
xm.!-lttpkequestobj status == 200) {

obj.innerHML =
: mmttpkgquesto_bj W r_espo_z_:se‘rgxt-;

.
Finally, when the XMLHt tpRequest ob]ect is in xts ready state and the status is equaI to 200, then the data is
fetched. The readyState value “0” indicates that the request is completed and the status 200 refers to the ‘Ok’
state of the XMLHt tpRequest object, which means that the request resource is completely downloaded. The five
ready states of the XMLHt tpRequest object are as follows:

1120

AJAX: A New Approach

0 for uninitialized state
1 for loading state

2 for loaded state

3 for interactive state

O0o0oDoao

4 for the complete state
The status property holds the status of the download. Table 28.1 lists some possible values of the status property:

Table 28.1: Possible values for the status property of XMLHttpRequest object

by

Ok R 200
Created 201
No Content 24
Reset Content 205 ‘
Partial Content 206
Bad request 400
Unauthorized status 401
Forbidden status 403
Not Found status 404
Method Not Allowed 405
Not Acceptable 406
Proxy Authentication Required 407
Request Timeout 408
Length Required 411
Requested Entity Too Large 413
Requested URL Too Long 414
Unsupported Media Type o 415
Internal Server Error 500
Not Implemented . 501
Bad Gateway 502
Service Unavailable 503
Gateway Timeout 504
HTTP Version Not Supported . 505

So, to make sure that the data is completely downloaded, the value for the status property must be 200. Finaily,
when the data is completely downloaded, it is retrieved in either the standard HTML or the XML format. Here,
the responseText property is used. So the data is retrieved in standard HTML format. However, if your data
is formatted as XML, then responseXML property is used.

1121

Chapter 28

After retrieving the data, you have to display the data on the web page. The data is displayed by using the
HTML <div> element. This is done as follows:
«div id="targetDiv">
<hl>welcome to my. Jewelery Showrcomi</hls
</div> -
The <div> element shows the location where you want to display the data. The id attributes is used to identify
the <div> element and it is passed as an argument to getData () function as shown here for bangles.txt file,
getpata ('bangles.txt’,’targetbiv’). - . : e . .
Finally, we have created and understood the simple AJAX application, considering the Jewelery showrcom
scenario.

Summary

In this chapter, the discussion began with the evolution of Web applications, along with the various
technologies, like CGI, Applets, JavaScript, Servlets, JSP, DHTML, and XML used for creating web applications.
Next we discussed the problems related with Classical Web Application model, which is based on the
synchronous mode of interaction of the client with the server. Due to this, the users had to wait a lot till the
entire processing of the server completed. Next we learnt about the AJAX Web Application model and how it
solved the problem of Classical Web Application model. When the AJAX Web Application model was compared
with the Classical Web application model, it showed us that AJAX Web application model used AJAX engine,
which helps in the asynchronous mode of interaction between the client and the server.

After going through all these theoretical concepts, we proceeded towards creating a sample AJAX application,
which build the concept on how the XMLl t tpRequest object is created and used,

In the next chapter, we will discuss the basics of JavaScript that is an essential component of AJAX,

Quick Revise
Q1. Define AJAX.

Ans: Asynchronous JavaScript and XML (AJAX), is a new technique of web programming,. Its primary
components are JavaScript and XML. AJAX is a technique, which describes how other technologies,
JavaScript, DOM (Document Object Model), and XML can be used together to create interactive Web
applications. '

Q2 Define CGIL

Ans: Common Gateway Interface (CGI) is a standard protocol for interfacing the external application software
with an information server, commonly known as Web server. CGl is not a programming language; rather
itis a protocol, which defines a set of rules on how the Web server communicates with the program. This
functionality allows the server to pass the request from the client Web browser to the external
application. In fact, CGI is a specification used to transfer information between the Web server and the
CGI program. A CGI program is written in any programming language, like C, Perl, and Java, etc.

Q3. List the usage of JavaScript.

Ans: The following are the uses of JavaScript:

& JavaScript is simpler, so anyone can put the small snippets of the code into their HTML pages.

Q JavaScript enables writing of dynamic text into HTML page. The variable text can also be written in
HTML page, eg. document.write(“<h1>" +name + “</h1>"). This command will write the
text of the name variable into the HTML page.

O JavaScript enables you to read and change the content of HTML controls. For example, the text
inserted in the text field of an HTML page can be read with the help of JavaScript.

O Certain validations to be performed on the client-side, such as not leaving any text field blank,
match of the password and the confirmation of password fields, etc. can be checked at client-side by
using JavaScript as the scripting language.

1122

AJAX: A New Approach

Q5.

Ans:

Ans:

Q7.

Q8.

Ans:

Q9.

O JavaScript is also helpful in creating cookies. It can be used to either store or retrieve relevant
information on the client’s computer.

O JavaScript also enables you to load a specific page depending upon the client’s request.

QO JavaScript is used to write functions that are embedded in or included from HTML pages and
interact with the Document Object Model (DOM]) of the page.

D JavaScript is also helpful in changing the image as the mouse cursor moves over them.

O JavaScript is also helpful in calling the new web page, according to the client or user’s action
Define JSP.

JavaServer Pages {JSP) is an enhancement to the Java Servlet technology from Sun Microsystems. The JSP
technology provides a technique to dynamically generate web pages. JSP also simplifies the process of
creating or developing web-based applications.

Define DOM.

Document Object Model (DOM) is the API that serves as glue for binding a scripting language, like
JavaScript, with the markup language, like HTML. HTML DOM defines the standard set of objects for
HTML and allows access and manipulation of HTML objects in a standard way. It helps in specifying
each part of the web page and allows access by using naming conventions. A detailed study about DOM
is covered in the next chapter, which discusses the different levels of DOM that serve as the DOM
specification and more.

Define XML.

Extensible Markup Language (XML) is the language used for the exchange of information between the
applications or the organizations. XML allows the designers to create their own user-defined tags and
enable the transmission, validation, and interpretation of data between applications or the data between
the organizations

What are the usage of XSLT?

Extensible Markup Language Transformation (XSLT) is the language used for transforming XML
documents into XHTML or other XML documents. XSLT uses XPath for navigating through XML
documents and finding information in it. In the transformation process, XSLT uses the XPath searches for
those parts of the source document, which match the pre-defined template. When a match is found,
XSLT transforms the source document into the resultant document by applying the pre-defined template.

Explain the AJAX Web application model.

The AJAX apptlication eradicates the start-stop-start-stop nature or the click, wait, and refresh criteria of
the client-server interaction. Instead of loading the web page during the beginning of the session, the
browser loads the ASP engine, written in JavaScript, the web page sends its requests using a JavaScript
function. This JavaScript code makes a request to the server. The server response comprises of data and
not the presentation, which implies that the data required by the page is provided by the server as the
response, and the style or presentation is implemented on that data with the help of the markup
language. Most of the page does not change. Only parts of the page that need to change are updated. The
JavaScript dynamically updates the web page, without redrawing everything. For the Web server,
nothing has changed; it still responds to each request, just as it did before.

How the AJAX engine communicates with the server?

When the AJAX engine needs something from the server, like retrieving new data or loading additional
interface code, then the engine makes the asynchronous interaction with the server, using JavaScript and
XMLHttpRequest object for asynchronous data exchange. The engine’s interaction with the server does
not interrupt the user’s interaction with the application. In this way, the asynchronous communication is
done with the help of the AJAX engine.

Chapter 28

Q10. List the noteworthy status properties of AJAX.
Ans: Following are the noteworthy status properties of AJAX:

i. Ok 200
ii. Create 201
iti. No Content 204
iv. Bad Request 400
v. Method Not Allowed 405
vi. Bad Gateway 502
vii. HTTP Version Not Supported 505

1124

Understanding
JavaScript for AJAX

See page:

If you need information on:

Introduction to JavaScript

n without AJAX
Application with AJAX

Chapter 29

JavaScript was developed by Brendan Eich and introduced in the 1995 release of the Netscape 2.0. It was
standardized by the European Computer Manufacturer’s Association (ECMA) as ECMAScript. The ECMAScript
standard defines the core of the JavaScript language. Most browsers today support the third edition of the
ECMA-262 standard. JavaScript adds interactivity to web pages made in HTML and this made JavaScript
more popular and widely used very quickly.

JavaScript is an essential part of AJAX. The JavaScript code in an AJAX application sends the requests of
the client to be processed by the server, but doesn’t wait for an answer. Even better, JavaScript can also work
with the server’s response that comes in the form of XML, instead of reloading the entire page when the server is
finished with your request. In this case, the JavaScript processes the XML document according to DOM model.
It serves as the intermediary between the browser and the server so that a web page can be updated dynamically
without refreshing the entire page.

Introduction to JavaScript

With the advent of the Web, HIML and CGI {Common Gateway Interface) were the only two technologies
available for developing the web pages. HTML defined the part of the text document and instructed the browser
to display it. However, HTML has cne disadvantage of being static. If you wish to change something or want to
use the data entered by the user, you need to make a round trip to the server. This procedure, indeed, took a lot
of time.

When dynamic technologies, such as ASP, ASP.NET, PHP, or |SP, atrived in the market, we got an ability to
create dynamic web pages, which had the ability to interact with the user. In this case, the user entered some
data into the forms, which was then sent to the server. The server processed the data and then provided the
response to the browser in the form of HTML doctument, The problem with this type of approach was that each
time there was a change; the whole process had to be repeated. This was cumbersome, slow, and not as
impressive as the new media ‘Internet’ promises to be. The display of page meant the reloading of page, which
was a slow process and failed frequently.

Now there arose the need for a new technology, which would allow the Web developers to develop Web
applications that provide immediate feedback to the users and change the HTML without reloading the page
from the server every time. Suppose there is a form, which is reloaded every time there is an error in any of the
fields of the form. This would be quite a slow process. But, we can make it a fast process by using JavaScript
in your application. This is done by JavaScript at the client side, which flag an error message as soon as the error
oceurs in the form without reloading the page and without moving to the Web server.

JavaScript is executed by the browser on the user’s computer. This type of code is called client-side code and
this type of approach results in fast-running web sites. It is a scripting language—a system of programming
codes—created by Netscape and can be embedded into HTML of a web page in order to add more interactivity
and functionality. JavaScript is an interpreted language, i.e. it doesn’t need any compiler to execute a code.

When JavaScript was first introduced, its name was LiveScript, but Netscape changed the name to
JavaScript. JavaScript is a scripting language and it is not related to Java in any way. Netscape included
JavaScript in their Netscape Navigator 2.0 browser via an interpreter, which read and executed the
JavaScript code added to .html pages. In general, script languages, such as Javascript, are faster and
easier than the structured languages, such as C++ and Java.

In its long journey, JavaScript has continuously grown in popularity and today it is supported by almost all
the browsers. JavaScript makes the web pages interactive, but it has to be used cautiously because browsers
implement JavaScript differently even though the core JavaScript is same for all the browsers.

An tmportant thing about JavaScript is that once you have learned its usage in browser programming, you
can use it in other areas also. Microsoft’s IIS server uses JavaScript to program server-side web pages (ASP);
PDF files also use JavaScript; even Windows administration tasks can be automated by using JavaScript.
A lot of applications, such as Dreamweaver and Photoshop, are scriptable with JavaScript. Some operating
system add-ons on Linux and Windows even allow you to write small helper programs in JavaScript.

Nowadays, a lot of companies are also offering Application Programming Interfaces (APIs), which feature
JavaScript objects and methods that you can use in your own pages. One of the examples of such API is

1126

Understanding JavaScript for AJAX

X

Google Maps. You can offer a zoomable and scrollable map in your application with jﬁst a few lines of code.
Also JavaScript is easier to develop as compared to other high-level programming languages or server-side
scripting languages, such as C++, Java, or to be run on server or command line, like Perl, PHP, etc.

Today there are so many web-oriented technologies available in the market that you should focus your client-
side JavaScript efforts on tasks for which they are best suited. The following are a few situations when you
should use JavaScript inyour Web application:

Q

Data entry validations—A JavaScript can be used to validate the data entered in the form, before it is
sent to the server for further processing. This saves a lot of time as well as effort of the server from extra
processing.

HTML interactivity — You can use DHTML for positioning the contents precisely on the web page, but if
you want interactivity in your web page, you need JavaScript. By the word interactivity, we mean that
the user is able to see the changes or get the feedback as soon as he/she enters the data in a form.

Serverless CGIs—This term is used to describe the processes that would be programmed as CGIs (if
JavaScript was not there) on the server-side, yielding slow performance because of the interactivity
required between the program and the user. This includes the tasks, such as small data collection lookup,
modification of images, and generation of HTML in other frames and windows-based on the user input.
But, with the availability of JavaScript, all these tasks can now be done on the client-side.

CGI prototyping —Sometimes you may want a CGI program to be at the root of the application because it
reduces potential incompatibilities among browser brands and versions. It may be easier to create a
prototype of CGI in client-side JavaScript. Use this opportunity to polish the user interface before
implementing the application as a CGI.

Offloading a busy server—If you have a highly trafficked web site, it may be beneficial to convert the
frequently used CGI processes to the client-side JavaScripts. After a page is downloaded, the server is
free to serve other visitors. Not only will this lighten the server load, but users also experience quicker
response to the application embedded in the page. ’

Adding life to otherwise-dead pages— HTML by itself is quite flat. Adding a blinking chunk of text doesn’t
help much; animated GIF images more often distract from, rather than coniribute to the user experience at
your site. But if you can dream up your ways to add some interactive zip to your page, it may engage the
user and encourage recommendation to friends or repeat visits.

Next we’ll discuss the merits of JavaScript. The following are the merits of JavaScript:

i

u]

Less server interaction—You can validate the user input before sending the page off to the server. This
saves server traffic, which means saving money.

Immediate feedback to the visitors — The user doesn’t have to wait for a page reload to see if they have
forgotten to enter something.

Automated fixing of minor errors —For example, if you have a database system that expects a date in the
format dd-mm-yyyy and the visitor enters it in the form dd/mm/yyyy, a clever JavaScript seript could
change this minor mistake prior to sending the form to the server. If that was the only mistake the visitor
made, you can save her an error message — thus making it less frustrating to use the site.

Increased usability by allowing visitors to change and interact with the user interface without reloading
the page—A classic example of this would be select boxes that allow immediate filtering, such as only
showing the available destinations for a certain airport, without making vou reload the page and wait for
the result.

Increased interactivity — You can create interfaces that react when the user hovers over them with a mouse
or activates themn via the keyboard. This is partly possible with CSS and HTML as well, but JavaScript
offers you a lot wider —and more widely supported — range of options.

Richer interfaces—You can use JavaScript to include items, such as drag-and-drop components and
sliders—something that originally was only possible in thick client applications.

Lightweight environment—Instead of downloading, a large file like a Java applet or a Flash movie, scripts
are small in file size and get cached (held in memory} once they are loaded. JavaScript also uses the

1127

“

Chapter 29

browser controls for functionality rather than its own user interfaces, like Flash or Java applets do. This
makes it easier for users, as they already know these controls and how to use them. In the next topic, we
would discuss the fundamentals of the JavaScript.

Basics of JavaScript

JavaScript (ECMAScript) provides everything that you need in order to accomplish basic programming tasks,
like data types, variables, operators that act on the variables, loops, functions that provide reusable code blocks
to accomplish a task. Objects are also part of JavaScript. Before discussing all these elements, let’s first
understand the syntax of the JavaScript. The following are some essential points regarding the syntax of the
JavaScript:

O JavaScript is case sensitive. Extra attention need to be paid when you are using capital letters in the
name of variables, functions, and objects. For example, the variable named XYz is different from the
variable xyz.

In order to use JavaScript in your web document, you need to use the <script> tag. All the JavaScript

coding is written between the opening and closing script tag. The following lines show the syntax of inserting

JavaScript in your web document:
<html>.

- <body> :)

*<scrfpt type— text/javascr{pt?: S

: ‘4/ 5cr1 pt:-
</body>
</html> : . B UEEEI e

You can add the J avascnpt code anywhere in the HTML document and browsers will interpret it. However,
this is a bad practice of inserting JavaScript code in the document. You should always try to include the
JavaScript code in the body of the HTML page.

O //is used to make the current line as the comment. The interpreter doesn’t try to run the content written
after the //. These comments are used to insert the notes in the document. These notes help in
understanding the code and are also helpful for the other person who wants to read and understand the
code.

0O There is one more category of comments — the multi-line comments. The multi-line comments start with /*
and end with * /. Such comments are useful when you don’t want to execute a certain section of the code,
but also not want to delete the code. For example, if you were having a problem with a block of code and
you also do not know the cause of the problem, then in such a situation you can comment that block of the
code using multi-line comments so as to isolate the problem,

O Curly braces ({ and}) are used to indicate a block of code. The code inside the braces is treated as one block.
This will become clearer when we would discuss loops in the subsequent sections.

U Semicolons are optional in JavaScript, but it is a good practice to use semicolons in the document
because this makes the code easier to read and debug. A semicolon is used to define the end of a statement.
Although you can put many statements in a single line, it is better to put each statement on a separate line,

Now based on the preceding syntax, we’ll give you the first JavaScript example. The code for this example is

as follows:
<html>
<body>
<script type=’ text/;avascnpt"
document.write(“ue11o'ﬂbr?df")
</scri pt>
</bodys .-
</htnil> 0 L i ar i

This is the simplest example of J avaScr:Lpt The precedmg code wﬂl produce an output ‘Hel.lo World" The

tags <script type="text/javascript™ and </script> shows the starting and end point of the

1128

Understanding JavaScript for AJAX

JavaScript code. The command, document .write, is the standard JavaScript command for writing the
output to a page. Now, we’ll discuss the programming elements available in JavaScript language one by one.

Data Types

JavaScript provides the following data types for handling data. The data is stored in variables and the data

type defines the kind of data which a variable can store:

O Number-—The Number type includes both integers and floating-point numbers.

Q String—A String type includes any group of one or more characters. A String type data is always
shown by enclosing it in quotation marks, e.g. “8” is a String type, while 8 is of Number type.

0 Boolean—A Boolean data type has only two values— true and false.

O Undefined—The Undefined type has only one value, i.e. Undefined. The Undefined value occurs only
when a variable is declared, but has not been assigned any value.

O Null—The Null type also has one value, i.e. null. A nuil value means that the object in the question
doesn’t exist.

In addition to these data types, two more data types are also available in JavaScript —Object and Function

type. These data types are sometimes called Reference data types. The Reference data types contain the reference

to the memory location that holds the particular data.

You don’t need to declare a data type, while declaring or initializing a variable in JavaScript. JavaScript

uses dynamic typing, i.e. the data type is inferred by the context of the JavaScript statement. This facilitates
the use of the same varlable for different data types and at different times, as shown here

b

Wiz

Variables
'A variable can be referred as the container for storing information. This information ran be of any type available
in JavaScript. The value of a variable can change during the script. The lifetime of a variable depends on a
number of factors. But the instant a web page clears the window, any variable it knows about are discarded. You
have a couple of ways for creating a variable in JavaScript. Use the var keyword, followed by the name you
want to give to the vanable For example, you can declare a varlable g;ven in the fo!lowmg statement:

varmNaP, K . I RE . L : Gave : .

The preceding staternent]ets the browser know that you can use the myVar vanabie later for holdmg the
information or to modify any data stored in that variable.

In order to assign a value to any variable, use the assignment operators, For example, if you want to assign a
value to the myVar variable at the time of declaranon of the variable, then the statement would be as follows:

var myvar = 99;: . : TR . S RIS
Another way to create a variable is to first declare the varlable and then assign the value to the variable by using
the assignment operators as shown here:

var myvar;]

myvar = 99; :
The preceding code shows that you need to use the var keyword only once, for the whole life of the variable in
the document.
The variable names are case sensitive in JavaScript. All the variable names must begin with a letter or
underscore. Camel notation is generally used for variable names, although no specific notation is required. In
camel notation, the first word is lowercase, and the additional words start w1th a Capltal letter, as shown here:

var myFavouriteColor; B H

Operators
Operators enable you to perform an action on a variable. The basic JavaScript operators, include assignment,
arithmetic, comparison, logical, and increment/decrement operators. Let’s discuss these operators one by one:

1129

Chapter 29

O Assignment operators — The assignment operator is used to assign a value to a variable as shown here:
SN T MRRVEUTT LRCOTOr e R G P e Gt i I e R D e i D
Q Arithmetic operators — The following arithmetic operators are available in Javascript for performing the
basic arithmetic function:
¢ Addition (+)
e Subtraction {-)
s Multiplication (*)
e Division (/)

The example given here shows the use of all the arithmetic operators:

The Addition vperafor and the string concatenation operator are the same character {¥). If you use this operator with
numeric values, the numbers are added tagether. If you use this operator with string values, the strings are joined
together (concatenated) info a single string.

JavaScript includes a Modulus (%) operator, also known as the Remainder operator. The Modulus operator is

used to calculate the value of the remainder after a number is divided by another number, as shown here:

Q Comparison operator—Comparison operators are used to evaluate an expression and return a Boolean
value (true or false) indicating whether the comparison is true or false. For example, ifa = 2andb = 4,
then the expression a > b is false. The comparison operator, in this case, is the greater than (>) operator.
Table 29.1 lists the operators available in JavaScript:

Table 29.1: JavaScript operators

)

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
- Equal to

I= Not equal to

8 Logical operators —In addition to the comparison operators, JavaScript also includes logical operators for
more complex comparisons. The logical operators include && (AND), [{ (OR), and ! (NOT). These
operators also return a Boolean value (true or false). The AND operator returns true only if all the operands
are true. The OR operator returns true if any of the operands is true. The NOT operator always returns the
value opposite to that of the operand.

QO increment and decrement operators—The increment and decrement operators provide a shortcut for
adding or subtracting 1 from a value, as shown here:

Understanding JavaScript for AJAX

var b =45; .

Chesy o // b= 44 PRI . . .
Increrent and decrement operators can appear before a varlable (preflx) oraftera varlable (postflx) If a variable
with a prefix operator is used in an expression, the value of the variable is incremented or decremented before
the expression is evaluated. If a postfix operator is used, the value is incremented or decremented after the
expression is evaluated.

Conditional Statements and Loops

A JavaScript program is composed of statements. Variable declarations, assignments, and initializations are
examples of JavaScript statements. JavaScript also includes a core set of programming statements similar
to those used in other programming languages —conditionals (i f/else, switch), and loops (for, while). First
we’ll discuss the conditional statements and their use in JavaScript.

O if statement--An if statement evaluates the Boolean value of an expression (true or false), and then
executes the code based on the result of that evaluation. If the expression in the parentheses evaluates to
true, the block of code contained in the curly braces ({ } } following the expression is executed. The syntax of
if statement is given here:

s conditionoto be checked): { - L

- _:}"tbde to be executed 1f the cond1t1an is true

Now, we'll show you how to use the 1f statement inside the script tag For the sake of simplicity, we are not

giving the full structure of the page. The example will write the greeting ‘Good morning’ if the time is less than

12 The code for this example is as follows:
<scr1pt type-“text,ljavascr1pt">

In the precedmg code a new instance of date ob]ect is created and is a551gned to the vanable d. The ob]ects used
in the JavaScript would be discussed in the subsequent topics of this chapter. The Date {) object handles the
date and time. The variable time is used to get the time in hours. The condition in i f statement checks whether
the time is less than 12. If the condition is true, then the greeting ‘Good morning’ would be displayed.

O if.else statement—The if-else statement is used if you want to execute some code when the condition is
true and the other code if the COI'Idlthn 1s false. The syntax of the if-else statement is as follows:

i f(condlt'l anj.. . ; T :
g

Code to be execut

}
E1se

Code to-be executed if the condition is not true

The following code shows how to use if-else statement in the JavaScript. This is an extension of the
example that we have discussed for if statement. An additional else statement is added to the previous
example only:
<scr1pt Type= text/;avas€r1pt"> SR
x

var d = new Date()

1131

Chapter 29

~ovar time = d getHours ()
if. (t1me < 12}
I

‘“”j;.wr1te(Gaéd morning!™)

else

i
document write("Good day!")

<fscr1pt> PRI : TR B i -
This code is the same as that for if statement, except that if the condition is false, ie. if the time is not less than
12, it will display ‘Good day!” greeting.

QO Switch statement— A switch statement can be used in place of a series of if statements. The syntax of the
switch statement is as follows
switch{n) {
case 1: ')

execut.e code. h’lotk 1 o

exécute cede b1ock 2

defauIt
code. ta be executed 1f nis
d1fferent From case 1 and 2,

First we have a smgle expression n (most often a variable), that is evaluated once. The value of the expression is
then compared with the values for each case in the structure. If there is a match, the block of code associated
with that case is executed. Use break to prevent the code from running into the next case automatically, The
default case plays a similar rele to an =1se statement. If there is not a specific case for a value, the default is
used.

Now, we’ll discuss the loops availabie in JavaScript. Loops are a way to repeat a block of code based on the
conditions that you specify. The two major kinds of loops are —for and while. Let's discuss the for loop first.

49 for loop—A for loop is used when you know in advance how many times the script should run. A for
loop includes three components, like initialization, test condition, and iterator. The syntax of a for loop is
as follows:
for (var=startvalue;var<=endvalue; var=var+i ncrement) {
code ta be executed

} S o
The example given here shows the use of a for loop in JavaScript. It defines a loop that starts with 1 =0, The
loop will continue to run as long as i is less than, or equal to 10. Here i will increase by 1 each time the loop
runs. See the following code smppet

<htm]> :

<hody>

<seript type= text/ javascript'»

“var =0
for (i=0;i<=10; 1++) {. .
_dpcument . write("The number is * + 1)
“document. wr1te("
}
‘ </scr1pt>
. </body>
Lt homls . . S ey R
The code in this loop is executed 11 times and each time the current value of i is written to the page.

1132

Understanding JavaScript for AJAX

. while (var<=endvalue) { .

while loop—A while loop is used when you want the loop to execute and continue executing, while the
specified condition is true. The syntax of a whi le loop is as follows:

code to he executed
Vars+;

}

The following example shows the usage of a while loop in Javascript. It defines a loop that starts with 1=0.
The loop will continue to run as fong as 1 is less than, or equal to 10. Here i will increase by 1 each time the loop
runs:

<html>

<body> C e
<script type="text/javascript”>
var =0 ML I T
while (i<=10)

document.write("The mumber-is ™ +*i)
document.write("
")
'i='i+1 s

L

</seript>

</body>. .. .

</html> : -

In this case, the initialization is i=0. The initialization occurs before the start of the while loop. The test
condition is i<=10 and the iterator is 1 +1.
The output of the preceding code will be same as the output of the for loop earlier.

Be careful not to create an infinite while loop. Check fo make sure that your test condition is not always true.

a

.

CwhiTe: (varcaengvalue) - - o sl Lo Do e L
Now, we’ll give you an example showing the use of a do-while loop. The following is the code for this example:
~<html> : : . L : - o .

<script types"text/javascript”s

do-while loop—The do...while loop is a variant of the while loop. This loop will always execute a block
of code once, and then it will repeat the loop as long as the specified condition is true. This loop will always
be executed at least once, even if the condition is false, because the code is executed before the condition is
tested. The syntax of the do-while loop is as follows:
do . oo o ER IR

‘code” to be execu
var++; o

}

<hody> - ;

var i=0 " -

do
document.write("The number.

" document.write(M<br /S50)
j=isel -

while (i<0) =
</script> i

</body>
</html>

1133

Chapter 29

The earlier code is understandable and doesn’t need further explanation. You can see that the condition is
checked at the end of the loop, which makes sure that the loop will run at least once.

Functions
A function is a reusable group of code statements that are treated as a unit. J avaScript includes many built-in
functions, and you can also create your own functions for code blocks that you want to reuse. Function
definitions are usually included in script blocks in the head section of an HTML /XHTML page. A function must
be defined before it can be used. Because the code in the head section of the page is read and interpreted before
the code in the body section, functions are usually defined in the head section and called from the body section.

The syntax for creating a function is as follows:

o Fungtion functionname(vari;var2; rx)

Here, varl, varg, etc. are the variables or values passed into the function. The curly brackets { and the)
defines the start and end of the function,

The following example shows how a function is created and defined in J avaScript. This example also shows
how a function is called in the subsequent portion of the program:

: fuﬂiit‘roﬁ ‘displaymessay
1di®

alert("sello wor

Ef's:{:_ript;} B D e A A A I SR T LA
</heacs

k="displaymessage(

function shows an alert message only. The displaymessage {) function is called in the body section of the
page. This function is called on the snclick event of the button, i.e. the message will be displayed only when
the user clicks on the ‘Click me!” button.

You can also make a function that will return some value. Hence, the function that will return some value should
use the return statement. The function incomeTax has a single parameter income. This function calculates the
income tax and returns the value of totalTax.

Here’s the code snippet that shows a function with return statement:
Ffunction incomevax (income) { . oo T

I oincTax = dincome ¥ . 2:

JavaScript Objects
An object is a collection of properties and methods that are grouped together with a single name. The objects
available in the JavaScript can be divided into these three categories:

O Built-in objects
Q Browser objects
Q User-defined objects

1134

Understanding JavaScript for AJAX

Now, we’ll explain the preceding JavaScript objects one by one.

Built-in Objects
There are nine built-in objects available in JavaScript. Built-in objects are those objects, which are available
regardless of the content of window. These objects operate independently of whichever pages your browser has
loaded. These objects are also called core language objects. Some of the commonly used objects are Array, String,
Math, and Date. Let’s understand it better.

Q Array-—When you use the new keyword and an object constructor function, you create a new instance of

the object:

. VAT myArray. = new Array(); oo 0 Ll T

// treating a new instance of the Array object "
In this case, the instance is a specific Array object that is assigned to a variable named myArray. This object has
all the methods and properties of all Array objects. Whatever changes you make to this instance of the Array
object affect only this instance, other instances of Array object remains unchanged. The changes don’t affect the
Array object itself. Methods are the specific functions that belong to a particular type of object. The Array object,
for example, includes a reverse () function that reverses the order of members of the array:

var. backwards .= myArray.reverse(); : S 17
Objects also include properties. Properties are attributes of an ob]ect eg. the Array object includes a length
property:

- var-HowLong s syArFRy JFERgEh e T T e T e e
You can use dot notation to access either the methods or properhes of an ob]ect
HyAFTay| veverse

a Strmg—The Strmg ob]ect is used to mampulate a stored piece of text. The followmg example uses the
length property of the String object to find the length of a string;

The output isas follows
The fol]owmg example uses the toUpperCase (} method of the Strmg ob]ect to convert a stnng mto uppercase
letters:
wivar-txta"Hello worldi B
document.writettat. totppercas
The output is as follows
0 Math- The Math ob]ect mcludes several mathematlcal values and fu.nchons T}us ob]ect a]lows you to
perform common mathematical tasks. You de not need to define the Math object before using it.
JavaScript provides eight mathematical values (constants) that can be accessed from the Math object.
These are F, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log of E, and
base-10 log of E You may reference these values from your J avaScrlpt llke tl'us

Mmath . LOG10E : ; o e P
In addition to the mathematical vaIues that can be accessed f'rom the Math ob]ect several functlons (methods)
are also available. The following example uses the round () method of the Math object to round a number to the
nearest integer:

document.write(Math.round(4.7)).

1135

Chapter 29

The cutput is as follows:
S S :
The following example uses the random () method of the Math object to return a random number between 0
and 1:
wiodocument.wihite (Math random()) .
The output is as follows:
R 4966046217190822 e :
@ Date—The Date object is used to work thh dates and times. We define a Date ob]ect with the new
keyword. The following code line defines a Date ob]ect called myDate
Hevar myDatesfiew Datel). i i : P R TR I
We can easily manipulate the date by using the methods avallable for the Date ob]ect In the example here, we
set a Date object to a specific date (29th]anuary 2020):
Somar myDatesnew. Bate()'

Browser Objects
The Browser Object Model (BOM) is a collection of objects that interact with the browser window. These objects
include the window object, history object, location object, navigator object, screen object, and document object.
The window object is the top object in the BOM hierarchy. The window object can be used to move and resize
windows as well as create new windows. The window object also includes methods to create dialog boxes, such
as the alert dialogs. The window object is a unique object—you don’t have to explicitly include a reference to it
when you use its methods or properties. Consider the followmg example
rgtery ("rodk! Is there a'reference?”);.
T}us function is exactly the same as the following:
stwindowialect("Look] s there a reference?™y;. P e R T AR e :
The hlstory ob)ect keeps track of every page the user visits, Methods of this ob;ect mclude forward back and go
hisror 4 :

“Focationifraf"nyPage. htn™ " .
The navigator object contains mformatlon about the browser name and version. I’ropertles 1nc1ude appName,
appVersion, and userAgent. The screen object provides information about the display characteristics, such as
screen height and width in pixels. The document object is included in the window object, as shown in
Figure 29.1:

Figure 29.1: Various Browser Objects
Let’s discuss the objects shown in Figure 29.1 in detail.

1136

Understanding JavaScript for AJAX

0 The window object— At the top of the object hierarchy is the window object. This object is very important
as it plays the role of master container for all the contents you view in the Web browser. In addition to the
content part of the window, where the documents will go, a window’s sphere of influence includes the
dimension of the window and all the stuff that surrounds the content area. The area where the scrollbars,
tool bars, status bar, and menu bar are present is known as the window’s chrome,

The window object is a convenient place for the DOM to attach the methods that will display model dialog boxes

and adjust the text that displays at the bottom of the browser window. A window object method enables you to

create a separate window that appears on screen.

You can reference the properties and methods of the window object in many ways—depending more on the
whim and style as compared to the syntactical requirements. The most common way to compose such references
include the window object in the reference as shown here:

:window, propertyName - :

“window, methoduamefparmters) SR . S : s
A window object also has a synonym when the script domg the referencmg pomts to the window that houses the
document, The synonym is self. In this case, you replace the window object by its synonym self and the
syntax changes to what is shown here

5&1f. propeprtyName: - T

self.methodName([parameters]) - R R ERE :
A user doesn’t create the main browser window. The user does so by opening the bmwser or by opening a URL
or file from the browser’s menus. The script can generate any number of subwindows when the main window is
already open. The method that generates the new window is window.open (). This method can contain up to
three parameters, which will define the characteristics, such as the URL of the document to load, its name for the
target attribute reference purposes in HTML lags, and the physical appearance. The following code shows the
creation of a new sub window:

. var subwindow e window.open(definition. html’, - "def" “hetght=225, widthe#001D ity
This statement will open a new sub window. You can also close this window by using the method close () as
follows:

-subwindow.close); : : S UTI. e
Some of the important methods available w1th the wmdow ob]ect are alert (), confirm{(), and prompt ()
The alert ()} method generates a dialog box that displays the text that is passed as a parameter. A single OK
button enables the user to dismiss the alert.

The next method is confirm(}. This dialog box represents two buttons—'Cancel’ and ‘OK’ and is called a
confirm dialog box. This is one of the methods that return a value: true if the user clicks on ‘OK’ and false when
the user clicks on the ‘Cancel’ button.

The prompt () dialog box displays the message that you set and provides a text field for entering the user’s
response. The two buttons ‘OK’ and ‘Cancel’ enable the user to dismiss the dialog box. The user either cancels
the entire operation by clicking on “Cancel” button or accepts the input typed in the dialog box by clicking on
the “Ok” button.

Some of the properties available with the window object are as follows:

s closed-lt returns a Boolean value that indicates whether or not a window is closed.
e defaultsStatus—It sets or returns the default text in the status bar of the window.

e document —It is used to access document object.

s history—Itis used to access history object.

s location-Itis used to access location object.

s name— It sets or returns the name of the window.

¢ opener—It returns a reference to the window that created the window.

* outerheight —It sets or returns the outer height of a window.

e outerwidth—It sets or returns the outer width of a window.

1137

Chapter 29

= self-Itreturns a reference to the current window.
* status— It sets the text in the status bar of a window.
Some commonly used methods of the window object are as follows:
* alert{) —The alert () method is used to display an alert box with a specified message and an OK
button, The syntax of the alert() method is as follows
Talert(message) e : R ST
¢ close(}—The close () method is used to close the current window, The syntax of the close ()
" method is as foliows:
witidew €loser) T LT e e B Ty e i
e confirm() —This method displays a dlalog box with a message and an ‘OK’ and a ‘Cancel button.
The syntax of the conf irm{} method isas follows
® open{) -—Thts method opens a new browser wmdow The syntax of the open () method is as follows
window. open(URL, ‘name,” specs, replage) - 00 T :
All the four parameters are optional.

¢ print() —The print () method is used to print the contents of the current window. The syntax of

the print () method is as follows
"-i"m print{) L, . e R
e prompt () --Thls method dlsplays a dlalog box that prompts the user for mput The syntax of the
prompt () method is as follows:
e prempEitent; defanl trese) 11
Both the parameters passed are optional.

D@ The location object—The location object represents the URL loaded into the window. A URL consists of
many components that define the address and method of the data transfer for a file. A URL can be divided
into two parts—protocol and hostname. You can access all these items as the properties of the location
object. However, in most of the cases, your script would be interested in only one property, the href
property, which defines the complete URL.

Settmcr the locaticn.href property is the most common way for your scnpt whlch nav1gates to other pages
~locarion href = http://wiw kogentindia, com; - : i
You can generally navigate to other pages in your own web site by specifying the relative URL rather than the
complete URL. For the pages outside the domain, you need to specify the complete URL. If the page is loaded in
another window or frame, the window reference should be part of the statement. For example, if your script
opens a new window and assigns its reference to a variable named new Window, the statement that loads a page
into the sub window is as follows:
< -cewwindow. Focationhrefm Bip:/dew hogantindia. comi - 4
Some of the important properties available with the location object are as follows

¢ host—This property sets or returns the hostname and port number of the current URL.
e hostname—This property sets or returns the hostname of the current URL.

¢ href-It sets or returns the entire URL.

® pathname—It sets or returns the path of the current URL.

s protoccl-It sets or returns the protocol of the current URL.

Some of the important methods available with the location object are assign (), reload (), and replace
{). The assign ()} method loads a new document The syntax of the assxgn is as follows:

- location.assignfuryy : ¥ R LR
The parameter URL represents the URL for the documerlt to be loaded

The reload () method is used to reload the current document The syntax for rel oad () method is as follows
Jocation: reload() - - O e P

1138

Understanding JavaScript for AJAX

The replace () method replaces the current document with the new one. The syntax for the replace()
methed is as follows:

location.FeplacefnewRL) .- .- -
The next object to be discussed is the navigator object.

Q The navigator object-The navigator object is implemented in almost every scriptable browser, even
though its name is reminiscent of the Netscape Navigator-branded browser. All browsers also implement a
handful of properties which reveal the same kind of properties that the browser sends to the servers, with
each page request. Thus, the navigator.userAgent property returns a string with a number of details
about the browser and the operating system. For example, the script running in Internet Explorer 7 in
Windows XP receives the following value for the navigator.userAgent property:

. Mozilla/4.0 (compatible;o o oo B : :
MSIE 7.0; ... :)
. windows NT §.2;
NETOR Llia3zz; o0
WNETTCLR 200507277 7 T e e R S S
-NET CLR"3:0.04506.5%0; & B s SCL P SRS L SR I s R
S WNETCCLRU3LS.20706) -0 10 nsl ol sk SR e pREE G e

O The document object— The document object holds the real contents of the page. Properties and methods of
the document generally affect the look and content of the document that cccupies the window. All W3C
DoM-compatible browsers allow script access to the text contents of a page when the document is loaded. As
you have seen in the preceding code snippets that the document.write () method lets a script create
content dynamically as the page loads on the browser. Many document object properties are the arrays of
other objects in the document. These properties provide additional ways to reference these objects.

You can access the document object’s properties and methods straightforward, as shown in the following syntax

examples:

There are four important collections available with the document object. These collections are as follows:

e anchors[] —The anchors collection returns a reference to all Anchor objects in the document. The
syntax anchorf{] collection is as follows:

“document; anthors[oo e o el e R e X o .

+ forms[]| —The forms collection returns a reference to all Form objects in the document, The syntax
for the forn] is as follows:

document. forms[] Rt SR SRR S U SR PR PR A : : TR

¢ images[] —The images collection returns a reference to all Image objects in the document, The
syntax for the images[] is as follows:

¢ links[] —The links collection returns a reference to all Area and Link objects in the document. The
syntax for the links[] is as follows:

L B R X E e L

In addition to these collections, document object also has some properties. These are as follows:
* cookie—The cookie property sets or returns all cookies associated with the current document. The
syntax for using the cockie is as follows:
“Qortmernt COORTE: 7 I LTI e L e i P
» domain—The domain property returns the domain name for the current document. The syntax of
using the domain property is as follows:
document domain: 50 e e T R R R g T i & -
* lastModified—The lastModified property returns the date and time the document was last
modified. The syntax of 1astModified is as follows:
document FastModiFied: o e B T sl

G e FORLT SRTRTER RE BE t

1139

Chapter 29

» referrer—The referrer property returns the URL of the document that loaded the current
document. The syntax for using the referrer property is as follows

< document iraferper

+ title—The tltle property returns the title of the current document (the text msrde the HTML title
element). The syntax of using the title property is as follows:

document .title: ,

o URL—The URL property returns the URL of the current document The syntax of using the URL
property is as follows

L CUMBRL JURL B S L = e e

The important methods avallable w1th the document oblect are as follows

e close(}—The close () method closes an output stream opened with the document . open method,
and displays the collected data The syntax of the close () method is as follows:

i dotument i cTose)

richigsoryibacke)

s histery. fon

1140

e open(} —The open () method opens a stream to coHect the output from any document .write or
document . writeln methods. The syntax of wrrtmg the open () method is as follows

document. openiminetype, replace) ot . - : :

e write(}—The write () method writes HTML expressions or JavaScrlpt code to a document. The
syntax of the write () method is as follows:

document .writefexpl,exp expd, ...} v -

e writeln{()—The writeln{) method is 1dent1ca1 to the wrlte() method w:th the addition of
writing a new line character after each expressmn The syntax of wri teln () method is as follows:

document.wirttelnlanpl exp2, exp3joy .«) el e ; STEL

The history object— As the user surfs the web, the browser maintains a l:st of URLs for the most recent

stops. This list is represented in the scriptable object model by the history object. A script cannot

surreptitiously extract actual URLs maintained in that list unless you use signed scripts and the user grants

permission. Under unsigned conditions, a script can methodically navigate to each URL in the history, in

which case the user sees the browser navigating on its own, as though possessed by a script.

You should use the history object and its methods with extreme care. The design should be smart enough to

watch what the user is doing with your pages. Otherwise, you run the risk of confusing your user by

navigating to unexpected places. Your script can also get into trouble because it cannot detect where the

current document is in the Back-Forward sequence in history.

The history object is part of the window object and is accessed through the window.history property.

The following important methoeds are associated with the history object:

s back() ~The back() method loads the previous URL in the history list. The syntax for using the
back () method is as follows:

e forward() —The forward () method loads the next URL in the mstory lrst The syntax for using the
forward(} method is as follows

* gof() —The go () method Ioads a spec1f1c page in the hrstory hst The syntax for using the go{) isas
follows:

Ristory . go(rombes jURL)

The screen ebject—This is another read only object that lets the scnpt learn about the physrcal environment

in which the browser is running. For example, this object reveals the number of pixels high and wide

available in the monitor. The important properties availabie with the screen object are as follows:

e availHeight—The availHeight property returns the height of the client’s display screen
excluding the Wmdows Taskbar The syntax of usmg thlS property is as follows

screen.avai THeight™

e availWidth- The availWidth property returns the w:dth of the cllent s drsplay screen excluding
the Windows Taskbar. The syntax of using this property is as follows:

Understanding JavaScript for AJAX

s bufferDepth—The bufferDepth property sets or returns the b1t depth of the color pa]ette in the
off-screen bitmap buffer. The syntax for this property is as follows
T gereen. bufFErpepthanmier B SNSRI :
* colorDepth~The colorDepth property returns the b1t depth of the color palette on the destmatlon
device or buifer. The syntax for this property is as follows:
L SCrRen COTOTDEEN: o i cy ‘
* height —The height property returns the height of the c].lent 5 d1splay scTeen. The syntax for
helght property is as follows:
* w1dth The width property returns the w1dth of the chent :} djsplay screen. The syntax for using this
property is as foIlows
okresniwideh - SR HEE et R LI TR
Now, a JavaScript uses the Document Object Model (DOM) for accessmg ob]ects assoemted with any HTML
page and changes their properties, We will now discuss Document Object Model in detail.

What is Document Object Model?

Document Object Model (DOM) is a platform- and language-independent standard object mode! for representing
HTML or XML in tree formats. Since the DOM supports navigation in any direction (e.g. parent and previous
sibling) and allows the arbitrary modifications, an implementation must at least buffer the document that is read
so far (or some parsed form of it}. Hence, the DOM is likely to be best suited for applications where the document
must be accessed repeatedly or out of sequence order. If the application is strictly sequential and one-pass, the
SAX model is likely to be faster and use less memory.

W3C began the development of the DOM in the mid-1990s. Although W3C never produced a specification for DoM
0, it was nonetheless a partially documented model and was included in the specification of HTML 4. By October
1998, the first specification of DOM (DOM 1) was released. DOM 2 was issued in November 2000, with specifications
on the style sheet object model and style information manipulation. DOM 3 was released in April 2004 and is the
current release of the DOM specification.

The Document Object Model (COM) is a tree-based representation of a document. The COM was created by the
World Wide Web Consortium (W3C) for XML and HTML/XHTML. The DOM provides a set of objects for
representing the structure of the document, as well as for accessing those objects. The DOM is divided into the
following three parts:

O The Core DOM, which includes objects that XML and HTML have in commeon.

0 The XML pOM includes the XML objects.

O The HTML pOM includes the HTML objects.

All the elements in a page are related to the topmost object. You can access any object in an HTML page and
change its properties by using JavaScript in this model. For example, you can:

S

» Change its position

s Change its source file

e Change its style properties
+ Change its content

* Add new content

A document can be viewed as a node tree. In the node tree view, a documént is a collection of nodes. The nodes
symbolize the branches and leaves on the document tree. There are several types of nodes, but the three main
types are —Element nodes, Text nodes, and Attribute nodes. Figure 29.2 shows the document as the node tree:

1141

Chapter 29

Docurment
Root Element:
<himi>
[|
Element: Element:
<head> <body>
Element: Attribute: Element: Elemant:
«<title> “hret* <a> <h1>
Taxt: Text: Text:
“iithe 1" inki” eadert®

Figure 29.2: A Node Tree for an HTML Document

From Figure 29.2, the following are the key components of the node structure:

Q

m]

u]

Element nodes—Elements are the basic building blocks of documents and give them their structure.
Elements can contain other elernents, e.g, ‘<html>‘, ‘<head>‘, *<body>*, etc. are the Element nodes.

Text node—In HTML/XHTML, Text nodes are always contained in Element nodes, e.g. ‘titlel”, ‘link1’, and
‘headerl’ are all Text nodes.

Attribute nodes— Attributes provide more information about elements. Attribute nodes are always
contained in Element nodes. For example, the ‘href’ is an Attribute node.

Every node has some properties that contain some information about the node. The properties are as follows:

Q
Qa
Q

nodeName _
nodeValue /

nodeType

Let’s now understand these properties.

]

=]

nodeName —The nodeName property contains the name of a node.
e The nodeName of an Element node is the tag name.

¢ The nodeName of an Attribute node is the attribute name,

¢ The name of a Text node is always #text.

¢ The name of the Document node is always #document.

nedeVaiue—On Text nodes, the nodeValue property contains the text. On Atiribute nodes, the
nodeValue property contains the attribute value. The nodevalue property is not available on Document
and Element nodes.

nodeType—The nodeType property returns the type of node. The most important node types are
described in the Table 29.2:

Table 29.2: Nodes of HTML document

Element 1

Attribute 2

1142

Understanding JavaScript for AJAX

Table 29.2: Nodes of HTML document

Text

Comment 8
Document 9

Methods Available in DOM for Accessing Objects

There are two methods available in DOM for accessing various elements of the document. These two methods are
getElementByld and getElementsByTagName. Let’s discuss these methods,

getElementByld{) Method
The getElementById () method returns the efement with the specified ID. The syntax of this method is as
follows:
*;-document getE lementByTd("someIn”); - : SR -
lf an element has an id, the simplest way to access it is by usmg the getElementById () method as shown
here:

<p 1d=”smm“>cre¢t1 ngs, Hellol</p>..

*somern’y; :
Here, a is now a shortcut for accessmg the unique element w1th the 1d value of s someID. In order o change a
property of this element, for example the fontWelght use the followmg code smppet

X.style fontweight = “bold!; .- - -

[/ changes - the font: weight to bald R ; “ ‘ '
You can also use getElementById to access elements by usmg node properhes For example, if the head and
body elements in Figure 29.2 include 1d values, such as the following, you can use these id values to access all
the other elements in the page

' -:head 'Eda” »

i Ll

<body 1d="e2"
To access the parent node of the head and body elements, you can use e1ther of the followmg
- document. getElementByrd(Sel’). E o R
" doctment; gets TementByTd(a3’ ..parentuode, e : : :
Both of these access the html element. To access all the cluldren of the body element use the followmg
oachnent et ETeremt By I C a2) rehiTanadeg; e T e e LR g
The child nodes are contained in an array. You can access mdlwdual cthd nodes by usmg the array. mdex value:
TdBCuUREnt. getETement By IAT 82), chi JdNades o)y S
This accesses the first child node of the body element <a>, since array mdexes start with 0. If you want to access
a 51blmg node, use the followmg

Next, we’ll study the getElementsByTagName () method

getElementsByTagName() Method
The getElement sByTagName () method returns all elements (as a nodelist) with the specified tag name that
are descendants of the element when you are using this method. The getElementsByTagName () can be used
on any HTML element, and also on the document. The syntax of getElementsByTagName () method is as
follows:

1143

Chapter 29

To use the getElementsByTagName method, you use a tagname rather than an id. For example:
Here, y contains a reference to h1 element in the document. To change the text color of h1, use the following:
sy e Co TR e PG reRRT T i R A e L e e B e g
Now, we’ll discuss the various DOM levels.

- DOM Levels

The W3C DOM specifications are divided into levels, each of which contains the required and optional modules.
To claim and support a level, an application must implement all the requirements of the claimed level and the
levels below it. An application may also support vendor-specific extensions, which don’t conflict with the W3C
standards, As of 2005, Level 1, Level 2, and some modules of Level 3 are W3C recommendations, which mean
they have reached their final form. The following are the levels of DOM:

D Level 0—The application supports an intermediate DOM, which existed before the creation of DOM Level 1.
Exampies include the DHTML Object Model or the Netscape intermediate DOM. Level 0 is not a formal
specification published by the W3C, but rather a shorthand that refers to what existed before the
standardization process.

D Level 1--It includes the Navigation of DoM (HTML and XML) document {tree structure) and content
manipulation {includes adding elements). HTML-specific elements are included as well.

O Level 2— XML namespace support, filtered views and events.
O Level 3—This level consists of 6 different specifications:

e DOM Level 3 Core

e DOMLevel 3 Load and Save

e DOM Level 3 XPath

« DOM Level 3 Views and Formatting

+ DOM Level 3 Requirements

e DOM Level 3 Validation, which further enhances the DOM
These levels will be discussed in detail in the following section.

-~

DOM Level 1 .
The DOM Level 1 is an application programming interface that allows programs and scripts to dynamically
access and update the content, structure and style of HTML and XML 1.0 documents. The Document Object
Model provides a standard set of objects for representing HTML and XML documents, a standard model of how
these objects can be combined, and a standard interface for accessing and manipulating them. Vendors can
support DOM as an interface to their proprietary data structures and APIs, and content authors can write to the
standard DOM interfaces rather than product-specific APJs, thus increasing interoperability on the Web.

The goal of the DOM specification is to define a programmatic interface for XML and HTML. The DOM Level 1
specification is separated into two parts —Core and HTML. The Core DOM Level 1 section provides a low-level set
of fundamental interfaces that can represent any structured document, as well as define extended interfaces for
representing an XML document. These extended XML interfaces need not be implemented by a DOM
implementation that only provides access to HTML documents; all of the fundamental interfaces in the Core
section must be implemented. A compliant DOM implementation that implements the extended XML interfaces is
required to also implement the fundamental Core interfaces, but not the HTML interfaces. The HTML Level 1
section provides additional, higher-level interfaces that are used with the fundamental interfaces defined in the
Core Level 1 section to provide a more convenient view of an HTML document. A compliant implementation of
the HTML oM implements all of the fundamental Core interfaces as well as the HTML interfaces.

1144

Understanding JavaScript for AJAX

DOM Level 2

The DOM Level 2 extends Level 1 with support for XML 1.0 with namespaces and adds support for Cascading
Style Sheets (CSS), events (user interface events and tree manipulation events), and enhances tree manipulations
(tree ranges and traversal mechanisms). The DOM Level 2 defines the following specifications, which have
reached in their final form:

O DOM Level 2 Core

O DpoMLevel 2 Views
Q DOM Level 2 Events
Q DCM Level 2 Style
Q DOM Level 2 Traversal and Range
0O DOMLevel 2 HTML
DOM Level 2 Core

This specification defines the Document Object Model Level 2 Core, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content and structure of documents. The
Document Object Model Level 2 Core extends the Document Object Model Level 1 Core.

The DOM Level 2 Core is made of a set of core interfaces to create and manipulate the structure and contents of a
document, The Core also contains specialized interfaces dedicated to XML.

DOM Level 2 Views
This specification defines the Document Object Model Level 2 Views. This is a platform and language-neutral
interface that allows programs and scripts to dynamically access and update the content of a HTML and XML
document. The DOM Level 2 Views extends the DOM Level 2 Core.

A document may have one or more views associated with it, e.g. a computed view on a document after applying
a S5 stylesheet, or multiple presentations (e.g. HTML Frame) of the same document in a client. That is, a view
is some alternate representation of a source document.

A view may be static, reflecting the state of the document when the view was created, or dynamic, reflecting
changes in the target document as they occur, subsequent to the view being created. This level of the DOM
specification makes no statement about these behaviors.

This section defines an AbstractView interface, which provides a base interface from which all such views

shall derive. It defines an attribute, which references the target document of the abstractView. The only

semantics of the AbstractView defined here create an association between a view and its target document.

There is no sub interfaces of AbstractView defined in the DOM Level 2.

However, AbstractView is defined and used in this Level in two places:

0O A document may implement a DocumentView that has a default view attribute associated with it. This
default view is typically dependent on the implementation, e.g. the browser frame rendering the document.
The default view can be used in order to identify and/or associate a view with its target document {(by
testing object equality on the Abst ractView or obtaining the DocumentView attribute).

O A UIEvent typically occurs upon a view of a Document, e.g. a mouse click on a browser frame rendering a
particular Document instance. A UTEvent has an AbstractView associated with it which identifies both
the particular {implementation-dependent) view in which the event occurs, and the target document the
UIEvent is related to.

In order to fully support this medule, an implementation must also support the Core feature defined in the

Document Object Model Level 2 Core specification.

DOM Level 2 Events
Thiis specification defines the Document Object Model Level 2 Events, a platform- and language-neutral interface
that gives to programs and scripts a generic event system. The Document Object Model Level 2 Events extends
the Document Object Model Level 2 Core and on Document Object Model Level 2 Views.

1145

Chapter 29

The DOM Level 2 Event Model is designed with two main goals. The first goal is the design of a generic event
system, which allows registration of event handlers, describes event flow through a tree structure, and provides
basic contextual information for each event. Additionally, the specification will provide standard modules of
events for user interface control and document mutation notifications, including defined contextual information
for each of these event modules.

. The second goal of the event model is to provide a common subset of the current event systems used in poM
Level 0 browsers. This is intended to foster interoperability of existing scripts and content. It is not expected that
this goal will be met with full backwards compatibility. However, the specification attempts to achieve this when
possible.

DOM Level 2 Style
This specification defines the Document Object Model Level 2 Style Sheets and Cascading Style Sheets (CSS), a
platform and language neutral interface that allows programs and scripts to dynamically access and update the
content of style sheet documents. The Document Object Model Level 2 Style extends the Document Object Model
Level 2 Core and on the Document Object Model Level 2 Views. The DOM Level 2 Style Sheet interfaces are base
interfaces used to represent any type of style sheet. The expectation is that DOM modules that represent a specific
style sheet language may contain interfaces that derive from these interfaces.

The DOM Level 2 Cascading Style Sheets (CSS) interfaces are designed with the goal of exposing CSS constructs to
object model consumers. Cascading Style Sheets is a declarative syntax for defining presentation rules,
properties and ancillary constructs used to format and render Web documents, This document specifies a
mechanism to programmatically access and modifies the rich style and presentation control provided by €5
(specifically CSS level 2 [CSS2]). This augments CSS by providing a mechanism to dynamically control the
inclusion and exclusion of individual style sheets, as well as manipulate CSS rules and properties.

The CSS interfaces are organized in a logical, rather than physical structure. A collection of all style sheets
referenced by or embedded in the document is accessible on the document interface,

DOM Level 2 Traversal and Range

This specification defines the Document Object Model Level 2 Traversal and Range, platform- and language-
neutral interfaces that allow programs and scripts to dynamically traverse and identify a range of content in a
document. The Document Object Model Level 2 Traversal and Range specification extends the Document Object
Model Level 2 Core specification.

The DOM Level 2 Traversal and Range specification is composed of two modules. The two modules contain
specialized interfaces dedicated to traversing the document structure and identifying and manipulating a range
in a document.

DOM Level 2 HTML
This specification defines the Document Object Model Level 2 HTML, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content and structure of [HTML 4.01]
and [XHTML 1.0] documents. The Document Object Model Level 2 HTML extends the Document Object Model
Level 2 Core and is not backward compatible with DGM Level T HTML.

This section extends the DOM Level 2 Core API [DOM Level 2 Core] to describe the objects and the methods
specific to HTML documents [HTML 4.01], and XHTML documents [XHTML 1.0]. In general, the functionality
needed to manipulate hierarchical document structures, elements, and attributes will be found in the core
section; functionality that depends on the specific elernents defined in HTML will be found in this section.

The goals of the HTML-specific DOM API are as follows:

0 To specialize and add functionality that relates specifically to HTML documents and elements.

O Toaddress issues of backwards compatibility with the DoM Level 0.

0 To provide convenience mechanisms, wherever appropriate, for common and frequent operations on
HTML documents.

1146

Understanding JavaScript for AJAX

The key differences between the core DOM and the HTML. application of DOM is that the HTML Document Object
Model exposes a number of convenience methods and properties that are consistent with the existing models
and are more appropriate to script writers. In many cases, these enhancements are not applicable to general DOM
because they rely on the presence of a predefined DTD. The transitional or frameset DTD for HTML 4.01, or the
XHTML 1.0 DTDs are assumed. Interoperability between implementations is enly guaranteed for elements and
attrtbutes that are specified in the HTML 4.01 and XHTML 1.0 DTDs.

More specifically, this document includes the following specializations for HTML:

0O An HTMLDocument interface derived from the core Document interface, HTMLDocument specifies the
operations and queries that can be made on a HTML document.

0 AnHTMLElement interface derived from the core Element interface, HTMLE 1 ement specifies the operations
and queries that can be made on any HTML element. Methods on HTMLElement include those that allow
for the retrieval and modification of attributes that apply to all HTML elements.

O Specializations for all HTML elements, which have attributes that extend beyond those specified in the
HTMLElement interface. For all such atiributes, the derived interface for the element contains explicit
methods for setting and getting the values.

The DoM Level 2 includes mechanisms to access and modify style specified through CSS and define an event

model that can be used with HTML documents.

DOM Level 3
The DOM Level 3 will extend Level 2 by finishing support for XML 1.0 with namespaces (alignment with the
XML Infoset and support for XML Base) and will extend the user interface events (keyboard). It will also add
abstract schemas support (for DTDs, XML Schema), the ability to load and save a document or an abstract
schema, explore further mixed markup vocabularies and the implications on the DOM API (“Embedded DOM™),
and suppert XPath.

As mentioned earlier that the level consists of six specifications, but here we’ll discuss only those specification
which are recommended, i.e. they are in final stage. These specifications are discussed here.

DOM Level 3 Core
This specification defines the Document Object Model Core Level 3, a platform- and language-neutral interface
that allows programs and scripts to dynmamically access and update the content, structure and style of
documents. The Document Object Model Core Level 3 extends the Document Object Model Core Level 2 [DoM
Level 2 Core].

This version enhances DOM Level 2 Core by completing the mapping between DOM and the XML Information Set
[XML Information Set], including the support for XML Base [XML Base], adding the ability to attach user
information to DOM nodes or to bootstrap a DOM implementation, providing mechanisms to resolve namespace
prefixes or to manipulate ID attributes, giving to type information, etc.

This specification defines a set of objects and interfaces for accessing and manipulating document objects. The
functionality specified {the Core functionality) is sufficient to allow software developers and Web script authors
to access and manipulate parsed HTML and XML content inside conforming products. The DOM Core API also
allows creation and population of a Document object using only DOM API calls. A solution for loading a
Document and saving it persistently is proposed in [DOM Level 3 Load and Save!.

DOM Level 3 Load and Save
This specification defines the Document Cbject Model Load and Save Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically load the content of an XML document into a DOM
document and serialize a DOM document into art XML document; DOM documents being defined in [DOM Level 2
Core] or newer, and XML documents being defined in [XML 1.0] or newer. It also allows filtering of content at
load time and serialization time.

1147

Chapter 20

DOM Level 3 Validation
This specification defines the Document Object Model Validation Level 3, a platform- and language-neutral
interface. This module provides guidance to programs and scripts to dynamically update the content and the
structure of documents while ensuring that the document remains valid, or to ensure that the document
becomes valid.

This module provides Application Programnung Interfaces (APIs) to guide construction and editing of XML
documents. Examples of such guided editing are queries that combine questions like “what does the schema
allow me to insert/ delete here?” and “if 1 insert/delete here, will the document still be valid?”

To aid users in the editing and creation of XML documents, other queries may expose different levels of details,
e.g. all the possible children, lists of defined symbols of a given kind. Some of these queries would prompt check
and warn users if they are about to conflict with or overwrite such data.

Finally, users would like to validate an edited or newly constructed document before serialiring it or passing it
to other users. They may edit, come up with an invalid document, and then edit again to resuit in a valid
document. During this process, these APIs can allow the user to check the validity of the document or sub tree
on demand. If necessary, these APIs can also require that the document or sub tree remain valid during this
editing process via the DocumentEditVal.continuousValidityChecking flag.

A DOM application can use the hasFeature (feature, version) method of the DOMImplementation
interface to determine with parameter values Validation and 3.0, respectively, whether or not these
interfaces are supported by the implementation. This implementation is dependent on [DOM Level 2 Core] and
the [DOM Level 3 Core] DOMConfiguration interface.

After discussing about JavaScript and DOM, let’s create a Web appllcatlon using JavaScript. The application
created in the following section, does not use AJAX features.

Creating a JavaScript Application without AJAX

In this application, we will send a POST request to the server without using AJAX technique. The application
demonstrates that from sending the request to the server, the server performing the request processing and
returning the HTML page to the client, the client has to keep waiting. The application sends a request for the
system’s current date and time to the server. The application starts with a HTML page, index.html. The HTML
page displays a button labeled “Get Current Date and Time” and when the client presses this button it sends a
POST request to the server for accessing the current date and time from the file date jsp.

Listing 29.1 shows the source code for the index.html page (you can find this file in the Code/AJAX/ Chapter
29/ Without_AJAX folder on the CD}):
Llsh.ng 29.1: index.html

When you open the HTML file, index.html, it s displayed like the one shown in Figure 29.3:

1148

Understanding JavaScript for AJAX

Application without AJAX

"Gl Locak intranet | Protected Mode: On f1wn ~
Figure 29.3: Accessing Current Date and Time without using AJAX

When you click on the button “Get Current Date and Time”, the HTML form sends a POST request to the server
for accessing current date and time from the file date.jsp.

Listing 29.2 shows the source code for datejsp file (you can find this file in the Code/AJAX/Chapter
29/ Without_AJAX folder on the CD):

Listing 29.2: date.jsp

1149

Chapter 29

The JSP page displays the current date and time when you click the Get Current Date and Time button of the
index.html page, as shown in Figure 29.4:

oFe Ede Tooks - Help

W@ [oo Without_AiRNidmeisp

Done. S Locd imtranet | Protected Mode: O B100% - |

Figure 29.4: Showing Current Date and Time without using AJAX
The date jsp page displays the current date and time without using any AJAX feature, as shown in Figure 29.4.

You have learned creating Web application using JavaScript, in this section. Let's now discuss creating Web
applications by using JavaScript and AJAX, in the following section.

JavaScript and AJAX

With AJAX, your JavaScript can communicate directly with the server, using the JavaScript object. With
this object, your Javascript can trade data with a Web server, without reloading the page. AJAX uses
asynchronous data transfer (HTTP requests) between the browser and the Web server, allowing web pages to
request small bits of information from the server, instead of whole pages. The AJAX technique makes Internet
applications smaller, faster, and more user-friendly. AJAX is a browser technology independent of Web server
software.

JavaScript plays an important role in the AJAX technique. Using JavaScript technology, an HTML page
can asynchronously make calls to the server from which it loads and fetches contents that may be formatted as
XML documents, HTML content, plain text, or JavaScript Object Notation (JSON). The JavaScript
technology may then use the content to update or modify the Document Object Model (DOM) of the HTML page.
The term Asynchronous JavaScript Technology and XML (AJAX) has emerged recently to describe this
interaction model.

AJAX is not a new technique as JavaScript and XML are being already in use for a long time. What has
changed recently is the inclusion of support for the XMLHttpRequest object in the JavaScript runtimes of the

1150

Understanding JavaScript for AJAX

mainstream browsers. Although this object is not specified in the formal JavaScript technology specification,
all of today’s mainstream browsers support it.

What makes AJAX-based clients unique is that the client contains page-specific control logic embedded as
JavaScript technology. The page interacts with the JavaScript technology based on events, such as the
loading of a document, a mouse click, focus changes, or even a timer. AJAX interactions allow for a clear
separation of presentation logic from the data. An HTML page can pull in bite-size pieces to be displayed.

With an HTTP request, a web page can make a request to, and get a response from a Web server - without
reloading the page. The user will stay on the same page, and he or she will not notice that scripts might request
pages, or send data to a server in the background. This is the most important functionality that JavaScript
provides to AJAX. Let’s create a Web application using JavaScript and AJAX in the following section.

Creating a JavaScript Application with AJAX

So far, we’ve covered the basics of JavaScript and discussed how to get a web page to call JavaScript functions in
response to user events. This covers a third of what you need to know to create an AJAX application. In this
application we will implement how JavaScript uses the XMLHttpRequest object for sending the request to the
server and receiving response from the server, The application starts with a HTML page, datetime.html, that
displays a button labeled “Get Current Date and Time".

Listing 29.3 shows the source code for thedatetime htm! page (you can find this file in the Code/ AJAX/Chapter
29/5imple_AJAX folder on the CD):
Listing 29.3: datetime html

1151

Chapter 29

Figure 29.5: JavaScript-AJAX Application

When you click on the Get Current Date and Time button , the XMLHttpRequest sends a POST request to the
server for accessing current date and time from the file date jsp.

Listing 29.4 shows the source code of the datejsp file (you can find this file in the Code/AJAX/Chapter
29/Simple_AJAX folder on the CD):

Listing 29.4: date jsp

Undorstanding JavaScript for AJAX

After clicking the Get Current Date and Time button on the datetime.html page, the HTML page displays the
current date and time, as shown in Figure 29.6:

" O el vt | Protected Wde O s <]
Figure 29.6: AJAX Application Showing Current Date and Time

In this application we first create an XMLHttpRequest object according to the browser is used. Next we define a
JavaScript function getDateTime () which uses the XMLHitpRequest for sending asynchronous request to the
server. In this function, we call the XMLHttpRequest object’s open () function and passed the datejsp page as a
parameter to this function. The XMLHttpRequest object sends a asynchronous POST request for date.jsp file to
the server. After opening the XMLHitpRequest object, the XMLHttpRequest object has the property named
onreadystatechange, which allows handling the asynchronous loading operations. If this property is assigned to
the name of the JavaScript function then, this function will be called each time the XMLHttpRequest object’s
state changes.

1153

Chapter 29

Now finally when the XMLHttpRequest object is in its ready state and the status is equal to 200, then the data is
fetched. The status 200 refers to the ‘Ok’ state of the XMLHttpRequest object. So, to make sure that the data is
completely downloaded, we check the value of the status property with 200. Finally when the data is
downloaded, the data is retrieved in either the standard HTML or the XML format. I responseText property is
used then the data is retrieved in the standard HTML format. But if your data is formatted as XML, then
responseXML property is used, We are using responseText since our data is in standard HTML format that is
returned by the date.jsp page.

Now after retrieving the data, in order to display the data on the Web page, you can assign that text to the <div>
element, whose ID is targetDiv in the web page and whose name was passed to the getDateTime() function.

Summary

In this chapter, you have learned about JavaScript in detail. You learned about the reasons behind the
evolution of the JavaScript, its advantages, the syntax of using JavaScript, the data types, variables,
operators, functions, loops, and objects present in JavaScript along with the Document Object Model (DoM)
and its various levels. The chapter also discussed creating a Web application using JavaScript. Further the
chapter discussed about use of JavaScript with AJAX. Towards the end of the chapter, you learned creating Web
applications using JavaScript and AJAX.

The next chapter will focus on XMLHitpRequest objects, which is another essential part of AJAX .

Quick Revise

Q1. Explain the relationship of JavaScript and AJAX,

Ans: JavaScript is an essential part of AJAX. The JavaScript code in an AJAX application sends the
requests of the client to be processed by the server, but doesn’t wait for an answer. Even better,
JavaScript can also work with the server’s response that comes in the form of XML, instead of
reloading the entire page when the server is finished with your request. In this case, the JavaScript
processes the XML document according to DOM model,

Q2. List the conditional statements used in JavaScript,

Ans: Following are the conditional statements used in JavaScript:

o

if statement
if-else statement
switch statement
while Ioop
do-while loop

0OD0Do0DoOo

for loop

Q3. List the JavaScript object types.

Ans: The objects available in the JavaScript can be divided into following types:
0 Built-in objects
Q Browser objects
0 User-defined objects

Q4. List the properties of Windows object of JavaScript.

Ans: Some of the properties available with the window object are as follows:

Q closed

0 defaultStatus
O document

O history

Q location

1154

Understanding JavaScript for AJAX

Q5.

Ans:

Q7.

Ans:

Q8.

Q9.

Q name
O opener
O outerheight

0 outerwidth

O self

O status

List the levels of DOM.

The following are the levels of DOM:

O Level 0—The application supports an intermediate DOM, which existed before the creation of DOM
Level 1. Examples include the DHTML Object Medel or the Netscape intermediate oM. Level 0 is
not a formal specification published by the W3C, but rather a shorthand that refers to what existed
before the standardization process.

O Level 1—Itincludes the Navigation of boM (HTML and XML) document (tree structure) and content
manipulation (includes adding elements). HTML-specific elements are included as well.

D Level 2— XML namespace suppeort, filtered views and events.
G Level 3 - This level consists of 6 different specifications:
¢ DOM Level 3 Core
* DOM Level 3 Load and Save
* DOM Level 3 XPath
* DOM Level 3 Views and Formatting
+ DOM Level 3 Requirements
o DXOM Level 3 Validation, which further enhances the DOM
Define DOM Level 2 Core.
The Document Object Model Level 2 Core extends the Document Object Model Level 1 Core. The DOM
Level 2 Core is made of a set of core interfaces to create and manipulate the structure and contents of a
document. The Core also contains specialized interfaces dedicated to XML.
What are the goals of DOM Level 2 Events?
The DOM Level 2 Event Model is designed with two main goals. The first goal is the design of a generic
event system, which allows registration of event handlers, describes event flow through a tree structure,
and provides basic contextual information for each event. Additionally, the specification will provide
standard modules of events for user interface control and document mutation notifications, including
defined contextual information for each of these event modules.
The second goal of the event model is to provide a common subset of the current event systems used in
DOM Level 0 browsers. This is intended to foster interoperability of existing scripts and content. It is not
expected that this goal will be met with full backwards compatibility.
What is the purpose of C557
Cascading Style Sheets is a declarative syntax for defining presentation rules, properties and ancillary
constructs used to format and render Web decuments.
What are the goals of HTML specific DOM API?
The goals of the HTML-specific DOM API are as follows:
O To specialize and add functionality that relates specifically to HTML documents and elements.
O To address issues of backwards compatibility with the DOM Level 0.
0 To provide convenience mechanisms, wherever appropriate, for common and frequent operations
on HTML documents.

1155

Chapter 29

Q10.
Ans:

1156

Define DOM Level 3 Load and Save.

DOM Level 3 Load and Save is a platform- and language-neutral interface that allows programs and
scripts to dynamically load the content of an XML document into a DOM docurnent and serialize a DOM
document into an XML document; DOM documents being defined in [DoM Level 2 Core] or newer, and
XML documents being defined in [XML 1.0] or newer. It also allows filtering of content at load time and
serialization time.

30

synchronous data transfer
with XMLHttpRequest

If you need information on: See page:

XMLHttpRaquest Object 1158
Reading a File Synchronously
. Reading & Fla K '

Using Basic AJAX Technigues

Using IFrames

1193

Chapter 30

The key to AJAX technique is an object called XMLHttpRequest, which is used by JavaScript. The
XMLHttpRequest object can send HTTP requests, receive responses, and parse them as XML. Since Chapter 28,
we have been using XMLHt tpRequest object. Now this chapter discusses the history and implementation of
XMLHttpRequest object in detail. Though in the first chapter a brief introduction of XMLHttpRequest is
provided, but this chapter provides the depth study of it.

The chapter first discusses the history of XMLHt tpRequest object. XMLHttpRequest is the API which can be
used by JavaScript, VBScript and other Web browser scripting languages, to transfer the XML and other text data
to and from the Web server by using HTTP. Apart from the data in XML format, the XMLHttpRequest object
can be used to fetch the data in HTML, JSON, or plain text format. XMLE{ tpRequest is an important part of the
Ajax web development technique, and it is used by many websites to implement interactive, responsive and
dynamic websites or Web applications.

XMLHttpRequest Object

The concept of XMLHt tpRequest object was developed by Microsoft as a part of Outlock Web Access 2000 (as
the server-side API call). The Outlook Web Access 2000 was the Outlook Web-mail service which allows users to
access the e-mail functionality. This was done by allowing the application to issue its own client-side HTTP
requests. Then Microsoft quickly drafted it into IE5 and this is accessible through Jscript, VBScript and the other
scripting languages supported by IE browsers. Therefore, the life of XMLHttpReguest object started as an
ActiveXControl in Internet Explorer 5.

The ActiveXControl could run only on the Internet Explorer (IE). The XMLHttpRequest object also became
popular in the other Web browsers, like Mozilla 1.0, Netscape 7, Safari 1.2, and Opera 7.60. The
XMLHttpRequest object varies from browser to browser. The different version of IE uses different
XMLHttpRequest object and the XMLHttpRequest object used in the other browsers, which run as a part of the
window object, is also different from IE. The browser-detecting script should be used, and then the instance of
the XMLHttpRequest should be made. The W3C standards organization took over the implementation of the
XMLAt tpRequest object with the intent of creating the common set of properties and methods which can be
used all over the browsers.

As a result, the XMLHt tpRequest is now included in IE 7 as a native object {(which means it works in the same
way as it does on Firefox), and the XMLHTTP object is still present as an ActiveXControl. With IE 6 being an
integral part of the Windows XP operating system, you are likely to have to make arrangements for it in your
applications for a long time yet.

The major purpose of XMLHt tpRequest object is to be able to use HTML and script to connect directly with the
data layer, which is stored on the server. The advantage of XMLHt tpRequest object is that there is no need to
send the page and refresh it because the changes to the data are immediately reflected in the web page displayed
by the Web browser. With the XMLHt tpRequest object, Microsoft Internet Explorer clients or the users of other
Web browsers can retrieve and submit XML data directly to a Web server without reloading the page. To
convert XML data into HTML content, use the client-side XML DOM or Extensible Stylesheet Language
Transformations {(XSLT) to compose HTML elements for presentation.
As discussed in Chapter 28, the code for creating an XMLEt tpRequest object in both Firefox and IE is given
here. Here’s the code for creating an XMLHt t pRequest for IE7, Firefox, Satari and Opera:

var xmRequest= new XMLHttpRequest(};
But, if the Web browsers are IE5 or IE6, then the following code can be used to create an object of
XMLHttpRequest:

var xmiRequest = new Activexobject("Microsoft.xMLHTTP"); .
With the help of the preceding code, the XMLHttpRequest object can be created depending upon the browser
used, whether it is Firefox or Internet Explorer 6. This shows that depending upon the browser, the
XMLEt tpRequest object is created. Here’s the complete code for detecting the browser type and then creating
an XMLEttpRequest object:

function getReq{)
{

1158

Asynchronous data transfer with XMLHtipRequest

if (w‘l ndaw xmuttpnequest)

catch(e) { i
; xmmeque.St &= fa'!se'

In the preceding code snippet, the XMLEt tpRequest object is xmlRequest. Depending upon the browser you
are using, XMLHt tpRequest object will be created.

Creating an object on the web page will not produce anything visible. The XMLHt tpRequest object can be used
in either of the following two ways:

O Synchronously

O Asynchronously

Synchronous and Asynchronous Pages
After making the instance of the XMLHt tpRequest object, depending upon the browser in use, it is important to
decide whether the loading of the page or the data will be synchronous or asynchronous. The XMLEt tpRequest
object can be used in calling the web page in either synchronous or asynchronous mode. If the
XMLHttpRequest object is used synchronously, then after sending the request to the server, the user has to wait
till the response is received from the server. Therefore, in the synchronous request, the XMLHt tpRequest object
works in the following pattern:
1. Create the object
2. Create a request
3. Send the request
4. Hold the processing until you get the response
Here’s the code for getting the file in synchronous mode:

var xmlnequest-- ew xMLHttpxequest(), ; -
- agdrass.nl "y fa,?se) o

var xmiRequest = xmiRequest. res;mnseXML, j 8 : Ca :
In order to get the file in a synchronous way, according to the steps given earher, an object is created through a
new operator of JavaScript. The first step in the preceding code helps in creating the instance of
XMLEt tpRequest object by using the JavaScript new operatot. Then the oper (} method is invoked by using
the request method, GET, a destination URL, and a Boolean value ‘false’, indicating that the request is
synchronous. Thirdly the send method is invoked. Finally, the responsexML, an XML document, is assigned to
a variable. Moreover, instead of responseXML, responseText can also be used.

There are only a few differences between asynchronous and synchronous request. In asynchronous request, the
following is the pattern:

1159

Chapter 30

Create the object
Set the readystatechange event to trigger a specific function

Check the readyState property, to see if the data is ready. 1f it is not, then check it again after an interval,
If the state becomes ready, then follow the next step

Open Request
Send Request

Continue the processing. Interruption is done only when the response is received

A e A

Now let's quickly analyze how synchronous and asynchronous requests vary from each other. One of the
differences is to set the Boolean property in the open method as true. True means that the script continues to run
after the send () method, without waiting for a response from the server. On the other hand, false means that
the script waits for a response before continuing script processing. The true value set for async parameter,
indicates that the request is asynchronous. Moreover in asynchronous, instead of waiting for the response from
the send method, the processing continues. The fo]lowmg code shows how the request is made asynchronously:

var xmlRequest = new XMLHttpReguest(); = = oo

xmiRequest.onreadystatechange = asyncuand1er,

xmlRequest.open('GET", "address.xml", true);

xmlRequast.send(null); R '

functi on asyncHand1er()

1f(xm'IRequest readyState e 4) _
var objxML = xmlRequest,responsexmL; . .

The entire processing of the readystatechange event is performed behind the scenes and it enables us to use
¥MLHttpRequest object asynchronously. The major thing to note here is that the XMLHEt tpRequest object with
the help of the readyState property, informs when the loading of data is going to be finished, as its properties
and methods cannot be used unless the loading completes.

XMLHttpRequest Properties
The XMLHttpRequest object has six properties and six methods to represent the request of XML, plain text or
JOSN formatted data, through HTTP. The following are the properties of XMLHt tpRequest object:

onreadystatechange Property

readyState Property

responseText Property

responseXML Property

status Property

statusText Property

| I 4 o O

Now let’s explore more about these properties.

onreadystatechange Property

This is an event handler for an event which triggers at every state change. This property sets the method to be
called on every state change. This is usually the event handler for the asynchronous callback. This property sets
or retrieves the event handler for the asynchronous requests made.

readyState Property

This property defines the current state of the XMLHttpRequest. It defines at what point the XMLHt tpRequest
object can send or receive the data. The following are the possible values indicating the various states of the
XMLHttpRequest:

O 0= Uninitialized — This is the stage when the object has to be created but has not been initialized. In other
words, the open method has to be called.

1160

Asynchronous data transfer with XMLHttpRequest

0 1= Loading/Open — This is the stage when the object has been created and initialized, but the send method
has not been called.

D 2= Loaded/Sent— This is the stage when the send () method is called, but the send method is waiting for
the return of the status code and the headers.

9 3= Interactive/Receiving—This is the stage in which some data has been received, but not all. The
properties of the object will not be used to view the partial results because status and response headers are
not fully availabie.

0 4= Complete/Loaded — This is the final stage where the whole data is received and the complete data is
available. This is the readyState property code which needs to be checked.

In the asynchronous callback handler, the state is checked to see whether the readyState is complete or equal

to 4. Once the data has been loaded completely, the other properties and methods can be used to get back the

data from the response to the request made,

responseText Property

This property of XMLEt tpRequest object returns the response in the form of a string. When the readyState
value is 0, 1 or 2, then the responseText contains an empty string. But when the readyState value changes
to 3 (Receiving), the responseText contains the incomplete response received by the client. Finally, when the
readyState changes to 4 (Loaded), the responseText contains the complete response received by the client.

responseXML Property

This property of XMLHttpRequest object returns the response as XML. This property returns an XML
document object, which can be examined and parsed by using W3C DOM node tree methods and properties.
The responseXML property represents the XML response When the complete HTTP response has been received
(when the readyState is 4), then the Content-Type header specifies the MIME (media) type as text/xml,
application/xml, or ends in +xml. If the Content-Type header does not contain one of these media types, then
the responseXML contains null value. Moreover, the responsexML value is also null when the readyState
value is not equal to 4,

The responsexML property value is an object of type Document interface, and represents the parsed document,
If the document cannot be parsed, then the responseXMi. value is null.

status Property
This property represents the HTTP status code and its datatype is of short type. The status attribute is available
only when the readyState value is either 3 or 4. If the status value is accessed when the readyState value is less
than 3 then, in that case, an exception arises. If the status property has the value 200, it indicates the successful
operation. Table 30.1 lists a complete summary of the HTTP Status code:

© Table 30.1: Http Status Code

i
£ 100 . Continue
4 . 7 Switching Protocols
- OK S
Created

i . Accepted T
L “E(.JPE%M T T T wNon-A;thoritative Informationmmmmﬂ

204 . . No Content g
.aagm»_ﬂwwmw-«- T Partial Content
© 300 ' © Multiple Choice i

1161

Chapter 30

Table 30.1: Hitp Status Code
gt — .
301 . Mov Peanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
306 Unused
307 Temporary Redirect
400 Bad Request
402 Payment Required
403 Forbidden
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request URI Too Long
415 Unsupported Media Type
416 Request Range Not Satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

The status property returns the HTTP status code of the request.

statusText Property

The statusText attribute represents the HTTP status code text and similar to status property, this property
also provides the statusText when the readyState value is either 3 or 4.

1162

Asynchronous data transfer with XMLHtipRequest

Using XMLHttpRequest Properties
The following code snippet provides the implementation of the previously discussed XMLHt tpRequest object’s
properties:
xmlRequest.open("GET", “address.xml", true);
xmIRequest.onreadystatechange = function()
if: (xmlRequest.readystate == 4) ..
if {S&m‘lhetiuest.stafus == 200) .

var emp = reguest,responseText;
'_a"ler_t('emj:i)'; ’ o

}
In the preceding code snippet, the xm1Request, XMLAt tpRequest object created before in the chapter, uses its
properties. Firstly the request is made for address.xml file. The first property is onreadystatechange, and
whenever the state of xmlRequest changes the function defined in JavaScript is called. This function, using
readyState property of xmlRequest, checks whether the value of readystate is 4. If the value of
readyState is 4, then the status of xmlRequest is checked. And if the value of the status is 200, then by using
the responseText property, the entire data in the address . xml file is retrieved and displayed as a text string,
If, instead of responseText property, the responseXML is used, then the response received is in the form of
XML document object.

The above implementation should have cleared the XMLHt tpRequest object’s properties.

XMLHtpRequest Methods

The XMLHttpRequest object also provides various methods to initiate and process HTTP requests. The
following is the discussion for the XMLHt tpRequest methods.

abort() Method

The abort () method is used to cancel the current XMLHt tpRequest and reset the object to the uninitialized
state,

open() Methed

The open () method requires the method parameter to specify how the request should be sent. The following
are the various parameters passed with the open () method:

g DOMString method -- The various HTTP methods can be GET, POST, PUT, DELETE or HEAD. If the data
is sent to the server then the POST method should be used. But, in order to retrieve the data from the server,
the GET methed is used.

0 DOMString uri—The uri parameter specifies the server URI to which the XMLHt tpRequest object sends
the request. The uri resolves to an absclute URI using window.document.baseURI property. In other
words, the absolute URIs can also be used that will be resolved in the sare way as the browsers resolve the
relative URIs.

0O Boolean async—The async property specifies whether the request is made synchronously or
asynchronously. If the request is asynchronous, then the default value of the async parameter is true, else if
it is a synchronous request, then the value is false.

Q0 DOMString username — The username and password of the servers, which require the authentication, are
also passed in open() method. The username is an optional parameter.

0 DOMString password—Similar to the username parameter, for server authentication, the password
parameter can also be passed. It is also an optional parameter.

After calling the cpen () method, the XMLHt tpRequest object sets its readyState value to 1 and resets the

responseText, responseXML, status, and statusText properties to its initial values.

1163

Chapter 30

The XMLHitpRequest object resets these values if the open() method is called and the readyState value is equal to 4.

send() Method
The send () method sends the HTTP request to the server and receives the response. After preparing the request
by using the open (} method, it can be send to the server using send(} method. The request can be send to the
server when the readyState value is 1, otherwise an exception is raised. The request is sent to the server by
using the parameters provided in the open () method. The send{) method returns immediately if the asvne
parameter has the value set as true, allowing the other client script processing to be continued.

The XMLHt tpReguest object sets the readyState value to 2 (Sent) after the send () method has been called.
When the server responds, before receiving the message body, if any, the xMLHttpRequest object sets
readyState to 3 (Receiving). When the request has completed loading, it sets readyState to 4 (Loaded). For a
request of type HEAD, it sets the readyState value to 4, immediately after setting it to 3.
The send () method takes an optional parameter that may contain data of varying types. Typically, you use this
to send data to the server using the POST method. You can explicitly invoke the send (} method with null,
which is the same as invoking it with no argument. For most other data types, set the Content-Type header using
the setRequestHeader () method {explained here) before invoking the send () method. If the data parameter
in the send (data) method is of type DOMString, encode the data as UTF-8. If data is of type Document then
serialize the data by using the encoding specified by data.xmlEnceding, if supported. If data.xmlEncoding is
not supported then UTF-8 encoding is used.

setRequestHeader() method

This method adds the custom HTTP headers to the request made. It sets the header to the request by adding the
name and value pair to the http header to be sent. This method takes two parameters — the labe] and value.

getResponseHeader() method
This method returns the value of the specified HTTI header. It has a single parameter that is the name of the
header.

getAliResponseHeaders() Method
This method returns the complete set of http headers as the string. This method returns null, if the value of
readyState is neither 3 nor 4.

Apart from supporting various methods, the XMLHt tpRequest objects also support multiple brwosers. Let's
discuss AJAX behavior for different browser, in the following section.

Browser Differences

The xMLHt tpRequest object is widely used for sending AJAX request. The reason behind its popularity is that
it is easy to use in a compatible way across multiple browsers. The two major browsers, Internet Explorer and
FireFox, provide the same basic APL The other browsers, like Opera and Safari, also support the same basic AT,
but only in their more recent versions.

While writing the cross browser, the first problem to overcome is that XMLHt t pRequest is an ActiveXObject
in Internet Explorer, whereas it is a normal JavaSeript object in other browsers, like Mozilla, Opera, etc. The
solution to this problem is to detect the browser and accordingly create the XMLHttpRequest object. The
following code snippet detects the browser in use and then creates the XMLHt tpRequest, accordingly:
function getReq()
{
if (window.XMLHttpRequest)
- s :
xmihttp=new XMLHttpRequest();

"else if (wi ndow.Activexobject)
P o .

1164

Asynchronous data transfer with XMLHtpRequest

try
{ ' _
xmlhttp = new Activexobject("Msxm12.XMLHTTP");
catch{e)
{
try
{ .
XmThttp = new Activexohject("Microsoft.XMLHTTP"):
} __
catch(e)
{
xmlhttp = false;
}
}

}
}
The overall pattern of the preceding code snippet is very simple and an instance of XMLHt tpRequest is created,
if the browser itself has XMLHttpRequest functionality. But if the browser has the ActiveXCentrol, then in
the preceding code the XMLHt tpRequest instance is made accordingly.

After discussing the concept of loading pages synchronously and asynchronously and properties and methods
of the XMLHttpReguest object, let's create Web applications that load pages synchronously and
asynchronously, in the following sections.

Reading a File Synchronously

We discussed earlier that if the async parameter of the open () method of XMLHttpRequest is set false, and
then the file is loaded synchronously. The following is the code in which the helloAjax.xml is loaded
synchronously. By synchronous mode, we mean that the user will have to wait till the entire file is not loaded. In
Listing 30.1 the onreadystatechange event does not fire since the file is read synchronously.

The code given in Listing 30.1 shows that the state of the XMLHttpRequest object is not alerted, but when the
entire file is loaded, the data gets displayed (you can find hello.htil file in the Code/ AJAX/Chapter 30/ Async
folder on the CD):

Listing 30.1: The hello.html File
<html>

<head>
<title>synchronously-reading the File</title> -

<script type="text/javascript”>
function getxXHR()
{
var RequestObject;
if (window.XMLHttpRequest)
{
RequestObject = new XMLHttpRequest();
} else if (window.ActiveXobject)
{ .
RequestOobject = new Activexobject("Microsoft.XMLHTTP");
} _ :
return RequestoObject;
-}
function hello()
{
var requestObject = getxXHR():

1165

Chapter 30

requestobject.open(“Get”, "he'l'loA]ax xml"”,false);
requestobject.send(null);)
requestobject. nnreadystatechangesfunct1on()
i ‘) '
. alert(requestobject.readyState);
}
if(requestobject. status==200)

document.getElementById(‘message'}, innerHTML= Yeprl 4+ “The ready State of the
XMLHttpRequest object is ¢ " + requestObject:readystaté + '</ps<p>' ;

var nodes=requestObject. responsexML. getE1ementsByTagName("name"),
for (i=0; i<nodes.length; ++)
{
- document. getE1ementById(message) innerHTML += + nodes{i].firstChild.nodevalue +
‘<fb>
"; :
~}
3
else
i

}
}. </scripts
</heads :
<body> : ’ S :
<h1>synchronous1y Read1ng the F11e</h1> R
<input type="button” va1ue-"chck Me" onc11ck—"he11o()"/> o
<p> - -
<h3>CLICK the button above to synchronous1y read the ﬁ1e</h3></p>
U <DIV 1d+“message“></oxv> .
</body> :

alert ("Request fai1éd"): -

. </htl‘lﬂ> . . L
In Listing 30.1, when the Click Me button is clicked the hello () method is called This method, in turn, calls the
getXHR () function, which returns an XMLAt tpRequest object depending upon the browser in use. After that
the synchronous request is made for helloAjax. xml file.

The code given in Listing 30.2 shows code for the helloAjax.xml file (you can find this file in the
Code/ AJAX/Chapter 30/ Async folder on the CD):

Listing 30.2: The helloAjax.xml File

zclass>
<students
<name> Suchita </name>

<subj ect>Economics</subjects
</ student>

<student>

<name> Charu </name>
<subject>Accountancy</subject>
</student>

</class>

Until the entire file is loaded, no other operation is performed and the user has to wait. Then, after the response
is received, it is displayed on the browser. Figure 30.1 shows how the hello.html page looks like:

1166

Asynchronous data transfer with XMLHtipRequest

Mtpftﬂo:m’hgynjkbn‘m
@ o [Spncheonousty Reading the Fite

| @ b

Synchrenously-Reading the File
i ChekMo |

CLICK the button above io syuchronously read the file

Vi Local intranet | Protected Mo G T

Figure 30.1: Displaying the hello_htm| Page

Synchronously-Reading the File
| Gk |
CLICK the bution ahove ta synchronously read the fle
The rendy State of the NMLHapFeqeest cbject s . 4

Sachits
Chare

Done

G ocat i) Protected Mode O B1oBN +

Figure 30.2: Displaying hello.htmi Page after Clicking the Click Me Button

After clicking the ‘Click Me’ buitton, shown in the Figure 30.1, the helloAjax.xml file is loaded and the
response received is displayed on the browser, as shown in the Figure 30.2:

1167

Chapter 30

By now it is clear that during the state change of XMLHt t pRequest object, no other operation can be performed
by the user, given in the synchronous mode. On the contrary, the asynchronous mode prevents the waiting
mode of the users. Therefore, let's see how to read a file asynchronously.

Reading a File Asynchronously

In the following code, when the request is made for hellonjax. xml file, the request is made asynchronously.
While the browser waits for the response, the user is aware of the state of XMLEttpRequest object. Moreover,
while the response is received, the progressbar.gif image is displayed and after the response is received the
response is displayed on the browser.

The code given in Listing 30.3 shows code for the hellol.html file, which asynchronously reads
helloAjax.xml file (you can find this file in Code/AJAX/ Chapter 30/ Async folder on the CDY:

Listing 30.3: The hello1.html File

<html>
<head>
<title>Asynchronousiy-reading the File</titles
<sCript type="text/javascript”s S
function getxHR()
{
var RequestObject;
if (window.XMLHttpRequest) { T
RequestObject = new XMLHttpRequest();
} else if (window,Activexobject) ' :

¥ o
return RequestObject; . .
¥ . o
function hellol() {
var request = gerxHr();
request.open("Get", "helloajax.xmi", true):
request.onreadystatechange=function(}. {
if(request. readystate==4) { E
document.getElementById(imgl').src="";
document.getEiementById('imgl').a]t = "The respanse has been received..... "3
if{request.status==200) { .
var nodes=request.respunseXML.getE1ementsByTagName("name“);
for (i=0; i<nodes.length; i++) {
document.getElementById('message').innerHTML += '<bs>’
+ nodes[i].FirstChild.nodevalue + ‘
';

RequestObject = mew Activexobject ("Microsoft.SMLIITP");

}
}
else {
alert {("Request failed");
1
} ~
else {
document,gettlement8yId(imgl').src = "progressbar.gif";
alert(request.readystate);
H
}
request.send(null);
} . .
</script>
</head>
<body>

1168

Asynchronous data transfer with XMLHtipRequest

<hi>Asynchronously-Reading the File</hl>
<input type="button" value="Click Me" onclick="hel1l01(}"/>

</p> .
<DIV id="message"></DIV>
</body>
</html>
Figure 30.3 displays the hellol.html page:

s PP —
i
File Edit view Fevortes Took Help
deo5e [F] asynchroncuste Reading the Fiie . i By - oo
o e T e - 2 2 e 8 e A o B S et et e o
! Asynchronously-Reading the File
] Me
;
E
P,
Done . . o i““[‘-:uc‘crlhhanel\P‘mlg:ted;ﬂcdc')n 1‘,]00’; .

Figure 30.3: Displaying hellot.html Page
When the user clicks the Click Me button, shown in the Figure 30.3, the XMLHt tpRequest object is created and
the asynchronous request is made for helloAjax.xml file. As the state of XMLHttpRequest object changes,
the image on the browser changes to the progressbar.gif, as shown in the Figure 30.4, and the alert box
displays the state of XMLHt tpRequest object:

@ aynsiuenoush -Resding thi Fie - Wi

: aturnet - plorer

“heliclrmnt etepiA

& gk 1
T or B} - o o~ Page - o ook v

Dene i Lecalintranet | Protected Mode: On AW

Figure 30.4; Displaying hello1.html Page after the Button Click

1169

Chapter 30

Similarly, as shown in Figure 30.4, the alert box displays the state of XMLHt tpRequest object and when the
readyState is equal to 4, the response is received and is displayed on the browser, as shown in the Figure 30.5:

- Elnnufnmmmmmwhmm A

;ﬁ& G View Favorkes Took Help T e gy

& @mmmm@mm L Lj‘-}i@;r@-;,‘;Pm-@m&."

Asvnchronousl)-Readmg the File
| | Ghck Mo |
{3 oo rerbonse hes boor teceved

| Suchita
Chare

Dane S &Lumm.m;nrmmmon o ?;mow. -

Flgure 30.5: Dlsplaylng Rasponse after the Asynchronous Request is Made

By now you must have understood the concept and difference between synchronous and asynchronous request
mode. The asynchronous mode of request and response enables the user to perform other operations, instead of
waiting for the response.

Let’s now discuss some commonly used AJAX techniques, which are implemented using XMLHttpRequest
object.

Using Basic AJAX Techniques

AJAX technique is used in various ways— to perform live searches, implement auto-complete, download images,
drag and drop, play games, and add interactivity to maps. Now we will discuss some AJAX techniques and their
implementations. You can use these techniques in your Web application to make it an enriched one. We have
used Java Servlets as server-side component but you can use any server-side technology, like NET, Ruby, Perl,
PHP, etc.

Performing Validation

Web applications must inform the users about errors as soon as possible. Earlier, Web-based applications used to
submit the whole page to validate the data or would depend on JavaScript to check the form. However, some
operations cannot be performed in JavaScript. The same validation logic has to be repeated on both client-side
and server-side, since it is possible that JavaScript is not enabled on the user’s browser. With Ajax, you can
simply invoke validation function written for server.

The code given in Listing 30.4 illustrates the user interface of Validation (you can find this file in
Code/AJAX/Chapter 30/ Validation folder on the CD):

Listing 30.4: The validation.html page of Validation Application
<iDOCTYPE HTML Pusuc . //wsc!/m'n HIML: 4.08 Trans*ttinml/lsu“
<html> : . :
<heads
<titlesusing: Ajam *Fw vahdat‘imd
<SCripT type="te

S var xmHttp; .
- Ffunction createxm.ﬂttpnequest() {

1170

Asynchronous data transfer with XMLHttpRequesf

if (window.Activexobject) { - :
xmIHttp = new Acti vexcbject("m crosoft. XMLHTTP") ;
} ;

else if (w1ndow XMLHttpRequest) { .
xmIHttp = new XMiHttpRequest();
}
function va11date() {
createXMLHttpRequest(),
var number. = document. getE1ementById("numher"),
var url = "validationServiet?numbér=" + escape(number wa1ue)..
xmiHttp: open("GET“; url, true);
xmiHttp onreadystatechange = callback; -
xmldttp. send(null); 'y
function callback() {
if (xmlHttp.readysState == 4) {
if (mlHttp.status == 200) {
var mes = '
xmTHLtp. responsexmL e
.getE1ementsByTagName("message“)[D] f1rstch11d data.
var val = _
Xminttp. responsexnt RUSE ’
getE1ementsByTagName(“passed")[0] f:rstch11d data,
-setMessage(mes, va1), . .

}
function setMessage(meSsage, 1sva11d) {

var messageArea = dbcument getE1ementById("numMessage")

var fontColor="red"; . .

if (isvalid == "true") { o
fontColor = green i

o . o
messageArea. i n'nér_HTp_u. =
</scripts

</heads

~<body> -

<hl>Ajax va11dat1on Examp1e</h1> - o : Wl

Number: <input type="text"'s1ze-"10" 1d="number" onchange="va11date() “f>

<div 1d=nummessage> .

. </body> .

</html> S -
Listing 30.4 has the main vahdate methocl mvoked on onchange event trigger, which in turn makes a call to
create XMLHttpRequest method to create the XHR object depending upon the browser. The open ()
method used here specifies that this is a GET request and makes the endpoint URL, which in this case, contains
the encoded parameters. Then the send () method sends the request to the server. The onreadystatechange
property stores the pointer to callback function which is called whenever the XMLHt tpRequest object’s internal
state changes. The callback function is also responsible for calling the specified function to handle the response
whenever the response reaches. The callback function gets the results from the server and is then passed to the
setMessage method, which determines the color in which the message should be displayed. After the
JavaScript part, the page has one text field number which is displayed to the user. The div numMessage tag is
used to reference itself in JavaScript.

"+ message AeE _</‘F6nt_>"; :

The ValidationServlet fetches request parameter “number” and calls the validateInteger function on
that parameter. The validateInteger function parses the String “number” and tries to convert it into integer.
If the conversion occurs, it returns true, otherwise it returns false. The return value is stored in a boolean

1171

Chapter 30

variable, which is “passed”, Depending on this boolean value, the string message is set and this message is sent
as XML response.

The code given in Listing 30.5 shows code for the ValidationServietjava file (you can find this file in
Code/ AJAX/Chapter 30/ Validation/ src folder an the CD):

Listing 30.5: The validationServlet java file of Validation Application

B!

import java.io.*;
import java.lang.NumberFormatException;
import javax.servlet.*;
import javax.serviet.http.*; :
public class validationServlet extends HttpServiet {
protected void doGet(HttpServletRequest request, HttpServ]etResponse response)
throws ServletException, IOException { .
PrintWriter out = gesponse.getwriter();
booTean passed = validateInteger(request. getParameter("numher")),
response.setContentType("text/xml");
response. setHeader(“Cache control”, "no-cache");
5tring message = "vou have entered an invalid number.”;
-if (passed) {

1
out. pr1nt1n(“<response>"), : I

out.printin("<passeds” + Boolean. toStr1ng(passed) + “</passed>"),)
out.printin{"message>" + message +" </message>“l':._ : .
Ut pr1nt1h("</response>“),
out. close(). :

message = "you have entered a valid number.": :

private boolean valudate:nteger(Str1ng number) { : o
boolean isvalid = true; o T PR
if(rmmberi=nu1'l){ ST e T
try {

} . :
catch(NumherFormatException e} {
isvalid = false;

Integer.parseInt(number);

}
}
else
isvalid = false;
return_isvalid;
3 St -~

3
For mapping ValldatJ.onServlet in Listing 30.5, we need to write the web.xml. The code given in Listing 30.6
maps the validation.html home page as welcome file in web.xml {vou can find this file in
Code/ AJAX/Chapter 30/ Validation/ WEB-INF folder on the CD):

Listing 30.6: The web.xml File of the Validation Application

1172

<?xm} version="1,0" encodmgs"UTF 8" 7>

<web-app version="2.4"
xmlfis="http://java.sun.com/xmt/ns/jZee"
xmths:xsi="htep: //wew.w3 . 0rg/2001/xMLSchema-instance”
xs§ :scheémaLecation="http://Java . sun. com/xml/ns/j2ee
http://Java.sun. com/xm1/nsf32ee/web app_2_4 xsd">
<serviet»

<serviet- name>va11dat1onServTet</serv1et~name>
<serviet- c1ass>va11dat1on5&rv'!et</serv'let c‘lass>
</serviet> :

<serviet-mapping-

Asynchronous data transfer with XMLHttpRequest

Make a new Web Project and

name it Validation, Then compile ValidationServlet.java and propetly

package these files in root directory “Validation” of this Web application. Make sure the /WEB-INF/lib folder
has the essential Servlet runtime jar files. Deploy the application on Tomcat 6 version, open Internet Expiorer,

and type http://localhost:8080/Validation/. The result is shown in Figure 30.6:

R
Gk 1y
v B v omb v rPager iTook v

.
o oelalx

| Ajax Validation Example

Ty ol itiant | Protecied Moos On | H00% %

Figure 30.6: Home Page for Validation Application

In Figure 30.6, type ab text string in the Number textbox and click outside the textbox. A message “You have

entered an invalid number™ appears, as shown in Figure 30.7:

B) 5 Sraght o'
oy afege dTanh -’
Ajax Validation Example
! e
3 You have entered an inabid mamber
oo e Mok P Mote B0 R <

Figure 30.7: Checking Invalid Value

1173

Chapter 30

Again enter a value, say 523, in the ‘Number’ textbox. You now receive a message "You have entered a valid
number”, as shown in the Figure 30.8:

e EA = idogen D Toons

1 Ajax Validation Example
| M 223
- Vo have enrered a valid suraber.

: Done) 7 _ %twmmmmoﬂ) X100% -

Figure 30.8: Checklng Valid Value

The data entered in the number textbox is validated and respective result is shown on the page, as shown in
Figure 30.8. In this section, you have performed validation of data using the validation technique of AJAX
programming; let’s discuss next technique of AJAX programming in the following section.

Reading Response Headers

Sometimes you are not interested to get content from the server, but only want to access the information related
to the content, such as type of content, its length, and modification date. The response headers include Content-
Type, Content-Length and Last-Modified date, etc. Here, the main idea is to send HEAD request to the server.
When a server responds to the HEAD request, it sends only the response headers without the content. Listing
30.7 illustrates how response headers are retrieved from XMLHttpRequest object. This page has one link to
execute method on XMLHttpRequest object to read all the response headers.

The code given in Listing 30.7 shows how response headers are retrieved from XMLHttpRequest object (you can
find the readingResponseHeaders.html file in the Code/AJAX/Chapter 30/ResponseHeaders folder on the
CD):

Llstmg 30.7: The readlngResponseHeaders html page of ResponseHeaders Apphcatmn

1174

Asynchronous data transfer with XMLHttoRequest

3

F) R . e R e v
When a user clicks on ‘Read All Response Headers’ hyperlink, as shown in Figure 30.9, the request is passed to
doHeadRequest method with request type allResponseHeaders and url readingResponseHeaders.xml. This
method calls the createXMLHttpRequest method, which, in turn, invokes the handleStateChange method. When
the server response is complete, the handleStateChange method is called. The handleStateChange method checks
if the responseType is allResponseHeaders and then calls the user-defined getAllRespenseHeaders, which, in
turn, calls the default getAllResponseHeaders method of xmlHttp.

The code given in Listing 30.8shows an empty XML file used to generate more response headers in Figure 30.9:
Listing 30.8:

The readingResponse

Ase
Now make a new Web Project and name it ResponseHeaders. Properly package files in Listing 30.7 and Listing
30.8 in the root directory of the ResponseHeaders Web application. The readingResponseHeaders. html file
ts included as welcome file in web . xm1. Deploy the application on Tomcat 6 version.

(Nore
Edit the web.xml file of listing 30.6 to. map the readingResponseHeaders.html file as the welcome file of the
application.

Open Internet Explorer and type http://localhost:8080/ResponseHeaders/. Figure 30.9 containing
“Read All Response Headers” hyperlink appears. When the user clicks on this link, the alert dialog box,
as shown in Figure 30.9 containing all response headers, is displayed:

1175

Chapter 30

Reading Response Headers
Hewd Al Response Headers

. Sarver Apache CoyoterL]
A g wra2emaNe
Lusr-Modfied: Thy, 13 hl 2006 122343 GMT
Comtent-Type: owk_mmvxm
Coment-L
Dot Thee, 23 Jui fmlwﬂﬁm

i q.m..m-mmmamun T e e

Figure 30.9: Dispiaying all Response Headers

You have learned handling response headers in an AJAX application, in this section. Let’s discuss another AJAX
technique using which you can load list boxes dynamically, in the following section.

Loading Dynamically List Boxes

Web applications are often made in step by step manner, which means each page asks the user for small pieces
of input and the succeeding page’s data is built from previous page’s input. Earlier, it was difficult to update a
page dynamically, especially in cases where some fields of page needed to change based on user input, without
refreshing the entire page. But with AJAX, all this is possible with ease.

Suppose there are two select boxes, X and Y, in an application. In cases where values of select box Y are filted
depending on the selected value in select box X, the available values for select box Y can be held in hidden select
boxes. When the selected value in select box X changes, JavaScript can predict which hidden select should be
displayed. That select box can then be made visible and the previous select box can be hidden. Another way is to
dynamically populate the option elements of select box B with the elements from a hidden list box. We are using
the second technique.

The application undet this section populates subcategories depending upon the selected category. There are
three categories in the first select box—PL {Programming Languages), Furniture and Clothes, respectively. Each
of these categories has three sub-categories. PL has C, C++, and Java sub-categories; Furniture has Table, Chair,
and Bed sub-categories; and Clothes has Cotton, Nylon and Woolen sub-categories. There are total nine
combinations made from these categories. If there are more combinations, then it becomes difficult to populate
them with JavaScript alone.

You can solve this problem easily using Ajax techniques. Each time a selection in the category select box
changes, an asynchronous request is sent to the server requesting a list of sub-categories available for that
particular category. The server is responsible for determining the list of sub-categories for the category requested
by the browser. You can also fetch these values from database. But for simplicity, we hard coded them. Once the
available sub-categories are found, the server packages them in an XML file and returns them to the browser.

The browser is responsible for parsing the server’s XML response and populating the subcats element.

The code given in Listing 309 shows code for the dynamicLists.html page which illustrates the dynamically
creation of the contents of one select box based on the value of other list boxes (you can find this file in the
Code/ AJAX/ Chapter 30/ DynamicLoadListBoxes folder on the CD):

Listing 30.9: The dynamicLists.html File

<}DOCTYPE him} PUBLIC. "-f/WBC//DTD XHTHL 1 O'Stl“! th/EN“
"hrps/ faww. w3 corg/ TR/ xhtm11/070 Axhiml: '
<htwl xinlns="http://veww. w3 .0org/1959/xhtmi™>

1176

Asynchronous data transfer with XMLHtipRequest

- sivedds - :
- '_ a?t'lewynmman“

1177

Chapter 30

When we select one of the options of Category List box, the cnchange event triggers a call to
refershCatList () function. This method gets reference to the select box with cat id. If no value is selected,
then the clearCatsList is invoked. Then the url to invoke RefreshCatListServlet Servlet is made using
createQueryString() method. This Servlet is responsible for handling the request. After creating the
AMLHttpRequestObject, request to RefreshCatListServlet is made. The onreadystatechange
property invokes the handlestatechange () method which has code for correctly received response. At last,
this function makes a call to the updateCatsZist (} method. The updateCatslList () method gets subcats
head element from XML response and retrieves all its nested <subcat > elements. Then, it makes option
elements one by one and appends each as a child of var subcats.

The code given in Listing 30.10 makes XML response for DynamicLoadListBoxes application (you can find the
RefreshCatListServlet.java file in the Code/AJAX/Chapter 30/ DynamicLoadListBoxes/src folder on the
CD):

Listing 30.10: The RefreshCatListServlet.java file of DynamicLoadlListBoxes Application

1178

Asynchronous data transfer with XMLHttpRequest

In Listing 30.10, the first static variable, availableCats variable, of ArrayList type is created. Then the init

() function of RefreshCatListServlet Servlet is called, which adds variables of MakeCategory type to
availableCats one by one. Objects of MakeCategory class are made with the help of MakeCategory
parameterized constructor. Now the doGet () method of Servlet is called which, in turn, calls the
precessRequest () method. Here, the Servlet first fetches the request parameter cat. Once the requested
category is determined, the Servlet iterates over a collection of objects representing the available category and
subcategory combinations. If a particular object’s category matches the requested category, then the object’s
subcategory property is added to the response XML string. Once all the subcategories for the specified category
have been found, the response XML is written back to the browser.

Now let's make a new Web Project and name it DynamicLoadListBoxes. Compile
RefreshCatListServiet. java and properly package files in Listing 30.9 and Listing 30.10 in root directory
DynamicLoadingListBoxes of Web application. We have not shown web. xml here, but you have to create
this file having mapping of Servlet. The dynamicLists . htnl is included as welcome file in web . xml Deploy
the application on Tomcat 6 versionn Open Internet Explorer browser and type
http://localhost:8080/DynamicLoadListBoxes/. In Figure 30.10, when you select the PL
category, the list box containing C, C++, and Java sub-categories is displayed:

Do T Wy Lot Protectrdbode On IR

Figure 30.10: Showing Loading of List Box Dynamically

1179

Chapter 30

In this section, you have learned loading a list box dynamically, in an AJAX application. Let's discuss creating an
AJAX application with auto refresh feature, in the following section.

Auto Refreshing Page

We all know that there are pieces of information which change frequently, like headline news, weather data on
web sites (www.news.google.com, www.weather.com), etc, In that case, it is not worthwhile to repaint the entire
page when the changes in only one or two headlines are needed, Also after the entire page refreshes, we feel
difficult to find what is new. The following code, Listing 30.11, automatically updates itself by one message after
5 seconds. The dynamicUpdates.html page has one simple button “Start” clicking which starts the
AutoRefreshing process.

The code given in Listing 30.11 shows code for the dynamicUpdates html page (you can find the
dynamicUpdates.html file in the Code/ AJAX/Chapter 30/ AutoRefreshing folder on the CD):
Listing 30.11: The dynamicUpdates.html document of AutoRefreshing Application

CoVaE Uk freshserviet?function=continue
amlitep.open("GET", url, true); oo T oo

XEINCED . onreadystatechange = potlcaliback;

smlitep.sendlnally; - o

1180

Asynchronous data transfer with XMLHttpRequest

time_span, innerHTML = new_int_val;

(03 Firsechild. datal T

ngetElementByrd("dynamicRefrasharea");

o i
In Listing 30.11, the cnclick event triggers a call to doStart. () method. It first creates the XMLHt tpRequest
object, and then the request url to invoke the DynamicRefreshServlet is made with the function =reset query
string. The cnreadystatechange property invokes the startCallback () method. The startCallback()
method has the setTimecut () method, which invokes the pollingServer ()} method after 5 seconds. In
between these 5 seconds, the refreshTime {) method is invoked. The refreshTime (} is a recursive function
and changes the time value on user interface from 5 to 0. It is invoked after 1 sec. In the refreshTime method,
when the new _int val reaches -1, its innerHTML property is again set to 5. The pollingServer () method
again creates another instance of XMLHttpRequest object. Now the request URL is made with

1181

Chapter 30

“DynamicRefreshServlet?function=continue” query string. On Servlet side, the message string is initialized and
the XML response is made with <message> tags. Coming back to dynamicUpdateshtml file, the
onreadystatechange property is initialized to pollCallback () method. The pollCallback () method
fetches the message from message tag of XML response and stores it in variable message. If the message is not
equal to the last message “finish”, it calls the createRow () method. This function creates a row of table from
the current message and adds it to the table element having id equal to dynamicRefreshArea. The first message
is displayed as a row of table. At the end of pollCallback(} method, calls to pollingServer{)} and
refreshTime () methods are made again. Finally, all the messages are displayed in row form of the table as
shown in Figure 30.11. The dynamicUpdateshtml page accesses all the messages from the
DynamicRefreshSezvlet, whichis given in Listing 30.12,

The code given in Listing 30,12 returns one message based on simple counter {you can find the
DynamicRefreshServlet.java file in the Code/AJAX/Chapter 30/ AutoRefreshing/src folder on the CD):

Listing 30.12: The DynamicRefreshServlet. java file of AutoRefreshing application

This file has the count variable, which tells the number of messages. Then comes the Servlet request processing
doGet (} method. The String variable res is the XML response, which is initially initialized to empty string. The
Servlet first fetches the “function” parameter and, depending upon its value which is either reset or continue, the
value of count is set. For each message to be displayed on the screen, a call to the DynamicRefreshServiet is
made.

Make a new Web Project and name it AutoRefreshing. Compile DynamicRefreshServlet.java and properly
package files in Listing 30.11 and Listing 30.12 in root directory of the AutoRefreshing Web application. The

1182

Asynchronous data transfer with XMLHttpRequest

dynamicUpdates.html is included as welcome file in web . xm1. Deploy the application on Tomcat 6 version.
Open Internet Explorer and type http://localhost:8080/AutoRefreshing/. In Figure 30.11 that appears,
when the user clicks on the ‘Start’ button, the page is automatically refreshed by one message in 5 seconds:

| Ajax Autorefeshing Example
| This page will secenasicaty sefiesh sckt (508

| Poge sbreiesb in 1 scconds.

2 Karoeskt seeks 50% sise in fights

Starbucks meeds to tweak plas

| Rupee drops against doliar
1 FDIlflcodgates ko open m Joby

"W Lockintrana | Protected Modes On - HI0K v

Figure 30.11: Showing Autorefreshing of Page
In this section, you have learned creating an AJAX application that refresh itself automatically in 5 seconds, as
shown in Figure 30.11. Now, let’s discuss another AJAX technique in the following section.

Dynamic Progress Bar

Almost all Web applications need to call long running processes, like adding an item to shopping cart, searching
for a profile, etc. from time to time. There should be some way to see the status of those processes on the page of
the Web application. Progression bar is used in long running processes to give you an idea about how much the
process is comnpleted. After building a progression bar, you can attach it to the Web application.

The code given in Listing 30.13 displays a simple progress bar interface (you can find the
ProgressionBar.htmlfile in the Code/ AJAX/Chapter 30/ProgressionBar folder on the CD):
Listing 30 ProgressionBar application

.13: The ProgressionBar.html code of
R —— o & T

1183

Chapter 30

L createmattpnequest(). . P e Tt i o
ﬂche;kniv(),.. ” R .
var url s "Progress-lonaarserv]et?functmnmmake s
L VR button s document getﬂementsyrd(“v
- button . disah - g
xmintLp. 0peﬂ{“GET“. ur1 truel. :
© xmiMrep, emreadystatechange & nroceedtaﬂbacki_.z
L xmiHttp, sem;l{m:“),
1

function proceedcaﬂback() {
if (xmInttp.readystate == §) {

if (mIHttp. status == 200) e ' T T PERNE
setTmeout("po'l'hngServerO", 2000),]

j T8

}
}
- Ffunction po‘llingserver{) {
_.c;reate)(m.ﬂttpkequest(). v .
soovar welo= Progressmnnarsarﬂet?funct'lon:poﬂ&key:
ATt upan("GET ., urt, true); . N
CXETHEED ead}rstatechange pﬂbngcaﬂ
_xm’iﬂttp szud(nuﬂ).

”fur{ct'lon_ po] ingcaﬂback() {

for (var 1w 1; i
L .var elem ;s docume

‘etem. style. backgroundm
“var ngxt,,ceﬁ R
i (nex’t_ceﬂ » index

innemm P
Defceht._complete s “%

ﬂ’ Pc_ nde B
s&r_;"im?‘ﬁ[”po"l’h

1184

Asynchronous data transfer with XMLHttpRequest

L returm Aoy oo

1 yId("progresswnBar")

'}L'ifﬁr "{vi:'r*.‘f 3 Tk e 30, 1++) i '
var e}em 3 docament getETementById("rectang?e" + 1)
] 1 ..

d="proceed" onchch“nromdﬁ ¥ >

Once a user cllcks on Start button it becomes d:sabled il the whole progress bar is dlsplayecl as shown in
Figure 30.12. The onclick event triggers a call to the proceed{) function, which in turn makes a call to the
checkDiv() function. The checkDiv(} function gets reference to the div element with id equal to
progressionBar. Visibility of progressionBar is initiaily set to *hidden’ in style part of this html file. The
checkDiv () makes it visible. Then the request url to invoke ProgressionBarServlet, as shown in Listing 30.14, is
made. The first call to ProgressionBarServlet is made with the query string “function=make”. The
onreadystatechange property is set to proceedCallback() method. This method calls the pollingServer{) method
after 2 seconds. In this method, another XHR request object is created. Another call to ProgressionBarServlet is
made with query siring “function=poll &key=undefined”. In pollingServer method, the onreadystatechange
property is set to pollingCallback () method. The pollingCallback method extracts the percentage value

1185

Chapter 30

from <percentage> tags of XML response made by ProgressionBarServlet. This method has code to display a
rectangular block of width equal to 3 blank space characters with green color and writes percentage value along
with the recently displayed rectangular block, as shown in Figure 30.12. The remaining processResult ()
method just locks for the first digit of the percent completed and on the basis of that digit, it figures out which
biocks need to be colored in the progress bar area. For the whole progress bar to be displayed, a total of eight
calls to pollingServer () are made, since there are eight percentage values in Servlet till index is less than
equal to 9. Each invocation takes place after 2 seconds, which means each rectangular block is displayed after
two seconds. When the whole bar is displayed, the “Completed!” message appears and the Start button becomes
enabled (Figure 30.13). The second time, a user clicks on the Start button, the clearBar () method is invoked
to clear the bar.

The code given in Listing 3014 mimics long running process (you can find the
ProgressionBarServlet.java file in the Code/AJAX/Chapter 30/ ProgressionBar/ src folder on the CD):

Listing 30.14: The ProgressionBarServiet.java file of ProgressionBar Application

£ 2

Make a new Web Project and name it ProgressionBar. Compile ProgressionBarServlet. java and properly
package files in Listing 30.13 and Listing 30.14 in root directory of the ProgressionBar Web application. Deploy
the application on Tomcat 6 version. Open Internet Explorer and type http:/ /localhost:7070/ ProgressionBar/
ProgressionBar.html. Figure 30.12 appears. When you click the Start button in Figure 30.12, a green progress bar
is displayed:

1186

Asynchronous data transfer with XMLHtipRequest

ﬁ e ""J"nmlﬁ. .

1 Ajax Progression Bar _
| P

:Dm.w o Co T ‘hlndmlﬁm&dﬁMod:On uu””iiﬂlﬁi“""‘ o

Flgure 30.12: Showmg Progression Bar

Figure 30.13 appears when the entire progress bar is displayed and the Start button becomes enabled

automatically:

Ajax Progression Bar

1 Stmta locg running process: C‘:&'_"}

Cotnpleted!

- leﬂmlmuﬂkw o vhmox'"v'"__a

Flgure 30.13: Showlng Completion of Progression Bar

In this section, you have learned creating an AJAX application that contains a progress bar, which controls the
other components of the application. Now, let’s discuss auto complete technique of AJAX, in the following

section,

Providing Auto Complete

There are many tools that display a pop up box with suggestion when you type. It speeds up data entry with
greater accuracy. Google presents Geogle Suggest page with autocomplete. It automatically adds the most likely
suggestion in text box along with the drop-down box. The drop-down box or pop-up box narrows down your
search by providing related answers. The drop-down box, in case of Google, is very rich, but we have hard
coded some values. Drop-down box options are displayed from these values.

1187

Chapter 30

The code given in Listing 30.15shows a suggest page for AutoComplete Application (you can find the
autoComplete.html file in the Code/ AJAX/Chapter 30/ AutoComplete folder on the CD):

Listing 30.15: The autoComplete . html code of AutoComplete Application
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//en">
o chtmts ' E

d:it'le#gax Auto cgmpletesz/nﬂ»
<5tyle typeh"textfcss“>
‘mousecut { .

background #708090; .

coler: #FZFFAFA;

}
: museoveri

backgrourd: #EFFAFA;
celor: #Q00008; .

- S

functmn 1nitVars() {
mputriem document. getﬂementsyl
wordTable = document.getelementByTd(" RO
completadiv = document.getelemantByzd(popup”); . e
word“rableiedy = document . geta'iemntayxd(“mrd_tahla.body -_ o

ds”);
rd.,table"),

funcrion ﬁﬂdmrds() {
initvars(Q;
if (inputfield.vatue, hmgth > o} { S
createXMLHttpRequest(}; - T
variurl = Autot:anp'iguServ?etMrds:-" + escape(i.nmﬁﬂiu’lue).
xmirtp.: ﬂp&n{"m" A PR A
xmiHtLy. eﬁrswdy’smmmge = tai ?m&*
S TN m}ﬂm seud(nu‘n}. il .
‘ ,,;} 1se 4
o v:TeamwsG }

k
fanctian caﬂback() { :
if (mlﬂttp readyState] 4) { .
e Mm.stﬂms e 200’} i
Er Wl e e
m‘!mmrmm :
=.gatzlwnts ; '

cleamurds() }

1188

Asynchronous data transfer with XMLHttpRequest

fseript

" hl>Afax Auto Complete Examplec/hls -

1189

In the beginning of autoComplete.html file, the mouseout and mouseCver are two style classes which set
the background and text color when these events happen in the drop-down box area. Drop-down box is
displayed in the form of a table. Variable completeDiv contains the whole style including top, left margins,
and border settings of each word in the drop-down box. The onkeyup event triggers a call to findWords ()
method, which in turn calls the initvars method. The initvars() gets references to all elements in
autoComplete._html to be populated. In findWords method, if the inputField has the number of letters
greater than 0, then an instance of XMLHttpRequest object is created. For each letter to be typed, the
AutoCompleteServliet is called and then the escape() function extracts the typed text by removing
whitespace. The onreadystatechange property is initialized as call to callback () method. The callback
method retrieves text of all word tags from XML response made by servlet, as shown in Listing 30.16. The
setWords () method calls the clearWords () method, which first retrieves the number of words in row form
from the drop-down box and then removes each row one by one. Now the setOffsets() method from
setWords method is invoked, which sets the offset settings for each word; actual offsets are calculated by
calculateOffset () method. Now from the text of all <word> tags, rows of the table are made. The <word>
tag accesses the values from the ArrayList words. First of all the cells are created, then they are appended as
children to rows and finally rows are appended to table body. If we click on a particular option of drop-down
area, the text field word is populated with the clicked word.

The code given in Listing 30.16 shows a dynamic search for words from a word service, shown in Listing 30.17
(you can find the AutoCompleteServlet.java file in the Code/AJAX/ Chapter 30/ AutoComplete/src folder
on the CD}):

Listing 30.16: The AutoCompleteServliet. java file of AutoComplete application,

1190

Asynchronous data transfer with XMLHttpRequest

Server-side performs dynamic lookup for words. A few words are hard coded in Servlet and the search is
actually performed by WordService. java class. If the word being searched is not from hard coded words, the
server sends the response with status code 204 indicating that there is no such content to the client.

Servlet first adds words to words list. Then, it fetches request parameter words from html page and stores it in
prefix. Now the instance to words list is retrieved using getInstance method of WordService.java class.
From getInstance method, a call to findWords () method is made. The findWords () method
returns reference to list containing words that start with the entered text in the textbox of autoComplete.html.
Each matched word is now put in one<word> tag and all word tags are put in <response> tag. Now XML
response is made. If the matching list’s size is equal to zero, no content response is sent to client.

The code given in Listing 30.17 shows code for the WordServicejava file (you can find this file in the
Code/ AJAX/Chapter 30/ AutoComplete/ src folder on the CD):

Llstmg 30.17 The WordSennce]ava file of AutoCormnplete Application

s'trmg'mrd UPPEICEs St
CiF(mard upper cass. startssﬁthip refix. upper)) - .

Chaptor 30

Now make a new Web Project and name it AutoComplete. Compile WordService.java and
AutoCompleteServiet. java and properly package files in Listing 30.15, 30.16, and 30.17 in the root directory
AutoComplete of Web application. Deploy the application on Tomcat 6 version. Open Internet Explorer and type
http://localhost:8080/AutoComplete/. Figure 30.14 will appear. In Figure 30.14, when you will type a
character, words beginning with “a” are fetched from the server and then displayed in the drop-down box:

Wback

Able.
[Absract
Jbrase
JAbyss

F ________________ U e
" Done o W Locat intranet | Frotected Mode On L Rs -

Figure 30.14: Showing Suggestion for the Letter a

In this section, you have learned various AJAX techniques and used them to create Web applications, In addition
to the XMLHttpRequest objects, you can also use IFrames to create AJAX applications. Let's discuss the
differences between XMLHttpRequest and IFrames aswell how IFrames can be used to develop AJAX
applications, in the following section.

XMLHttpRequest Object Vs IFrames

So far, we discussed about the XMLHttpRequest object and how it can be used for creating AJAX applications.
Now we will discuss about IFrames, which is used as an alternative of XMLHttpRequest object, for AJAX
applications [Frames are used for placing content from another web page onto a web page where it is used, i.e.
accessing news clips, calendars, weather forecasts from another web pages or sites onto a page. [Frames are used
for synchronous calls because they can load the content without reloading the entire page. The major
disadvantage of IFrames is that they only support asynchronous requests. The basic structure of [Frames is as

=y i

align«"canter) T hetghte’50" frames>
Here, 1d be specified in the <iframe> tag is src. The src attribute tells what should be
displayed inside a frame. This code snippet shows that the frame sends a asynchronous request to the web page

date.jsp and displays the response inside the frame. The other attributes have the following meaning;
O Name—Specifies the name of the frame that is used for targeting a frame.

QO Width —Specifies the width of the frame in pixels or percentage.

O Height—Specifies the height of the frame in pixels or percentage.

1192

Asynchronous data transfer with XMLHttipRequest

Q Marginwidth—Specifies the width in pixels between the frame and the left and right edges of the frame
contents.

U Marginheight—Specifies the height in pixels between the frame and the left and right edges of the frame
contents.

Q Scrolling ~Specifies whether scrolling is allowed or not. It is allowed by default. It can be set by using
values yes, no, and auto.

O Align—Specifies the alignment of frame to the page. The possible values are top, bottom, left, right, and
center,

O Frameborder—Specifies the size of the border in pixels outside the frame.

In this section, you have learned concepts of IFrame. Now, let’s create a Web application using [Frame, in the
following section.

Using IFrames

In this application, we will send an asynchronous request to the server without using XMLHttpRequest object.
The application uses [Frames for sending an asynchronous request to the server. The application starts with a
HTML page, index.html, and sends a request for the system’s current date and time to the server. The HTML
page displays a hyperlink and when you click on the hyperlink, the <iframe> tag sends an asynchronous request
to the server for accessing the current date and time from the file date.jsp.

The code given in Listing 30.18 shows code for indexhtml page (you can find this file in the
Code/ AJAX/Chapter 30/IFrames folder on the CD):

Listing 30.18: The index.html File
- <html> e

WS Bt

| Click bz and the Dace mnd Time wil appear ia the Same below

T W lec et P Meds O RN v

Figure 30.15: Sending Asynchronous Request using IFrames
When you click on the hyperlink “here”, the HTML form sends an asynchronous request to the server for
accessing the current date and time from the file date.jsp.

1193

Chapter 30

The code given in Listing 30.19 shows code for the date.jsp file (you can find this fiie in the Code/AJAX/Chapter
30/ IFrames folder on the CD):
Listing 30.19: The date jsp File

Mage mtentrypeu"textfhtml "3 mport= 3ava utﬂ ol - 3

vt as : .
s<heta ht «ﬁqu‘iue refresh" content="5 5

p' p) = AT .
<div align="Teft"s :
¢ erable border="0" ce’ﬂpm*iw

After cllckmg the hyperhnk the HTML page forwards the request to date jsp page and the }SP page cllsplays the
current date and time, as shown in Figure 30.16:

Click bere and the Date and Tooe will appear i the freme below

e e e e i ieees el aeees el ﬁtaul |vu Oﬂ.... moox '.r

L

Flgure 30.16: Showlng Current Date and Time using IFrames
You can see that there is no need to reload the whole page. The entire page is reloaded without refreshing.
Now that you have gone through the entire chapter, let’s take a quick summary of the topics dealt with.

Summary
Beginning with the traditional concepts, like cookies, Iframe tag, used in the websites, the chapter proceeds
towards how the concept of XMLHttpRequest came up and how it simplified the task. The various points
discussed were how the instance of XMLHttpRequest varies on the different browsers; the synchronous and
asynchronous mode of request through the application; discussion of properties, like onreadystatechange,
readyState, etc. and their implementation in an application; discussion of methods of XMLEttpRequest
object and their implementation in an application.

1194

Asynchronous data transfer with XMLHttpRequest

In the next chapter, we will discuss about some widely used AJAX Frameworks and how these frameworks are
implemented for creating AJAX applications.

Quick Revise

QL

Ans:

Q2.

Q3.

Ans:

Q5.

Ans:

Ans:

Q7.

Define XMLHttpRequest object.

The concept of XMLHttpRequest object was developed by Microsoft as a part of Qutlook Web Access
2000 (as the server-side API call). The Qutlook Web Access 2000 was the Outlook Web-mail service
which allows users to access the e-mail functionality. This was done by allowing the application to issue
its own client-side HTTP requests. Then Microsoft quickly drafted it into IE5 and this is accessible
through Jscript, VBScript and the other scripting languages supported by IE browsers.

List the properties of XMLHttpRequest object.

The following are the properties of XMLHt tpRequest object:

onreadystatechange property

readyState property

responseText property

responseXML property

status property

statusText property

Define the responseXML property of the XMLHttpRequest object.

This property of XMLHttpRequest object returns the response as XML. This property returns an XML
document object, which can be examined and parsed by using W3C DOM node tree methods and
properties.

List the XMLHttpRequest object methods.

Following are the methods of the XMLHttpRequest object:

Q abort()
Q cpeni()
O send()
Q

a

Q

[i Iy Sy W w

setRequestHeader ()
getResponseHeader ()
getAllResponseHeaders (}
List the states of the XMLHttpRequest object.
The following are the states of the XMLHttpRequest object:
0= Uninitialized
1= Loading/Open
2= Loaded /Sent
3= Interactive/Receiving
4= Complete/Loaded
List the parameters passed with the open() method of the XMLHttpRequest object.
The following are the various parameters passed with the open () method:
DOMString method
DOMString URI
Boolean async
DOMBString username
DOMString password
Define the send() method of XMLHt#pRequest object ?

Doo0o0QOo

ODO0OD0DOD

1195

Chapter 30

Ans:

Qs.

Q9.
Ans:

Q10.
Ans:

1196

The send () method sends the HTTP request to the server and receives the response. After preparing the
request by using the cpen () method, it can be send to the server using send() method. The request can
be send to the server when the readyState value is 1, otherwise an exception is raised. The request is
sent to the server by using the parameters provided in the open (} method. The send {) method returns
immediately if the async parameter has the value set as true, allowing the other client script processing to
be continued.

What does the setRequestHeader() method do?

The setRequestHeader() method adds the custom HTTP headers to the request made. It sets the header
to the request by adding the name and value pair to the http header to be sent. This method takes two
parameters—the label and value.

How AJAX deals with browser difference?

The XMLHttpRequest object is widely used for sending AJAX request. The reason behind its popularity
is that it is easy to use in a compatible way across multiple browsers. The two major browsers, Internet
Explorer and Firefox, provide the same basic APL The other browsers, like Opera and Safari, also
support the same basic AP, but only in their more recent versions.

List basic AJAX techniques used for Web application development.
The basic AJAX techniques used for Web application development are:
Performing validation

Reading response headers

Loading list boxes dynamically

Auto refreshing page

Using dynamic progress bar

Providing auto complete

OooopD o

